Evaluation of Injection capabilities of a biopolymer-based grout material

IF 2.5 3区 工程技术 Q2 ENGINEERING, CIVIL
Minhyeong Lee, J. Im, I. Chang, G. Cho
{"title":"Evaluation of Injection capabilities of a biopolymer-based grout material","authors":"Minhyeong Lee, J. Im, I. Chang, G. Cho","doi":"10.12989/GAE.2021.25.1.031","DOIUrl":null,"url":null,"abstract":"Injection grouting is one of the most common ground improvement practice to increase the strength and reduce the hydraulic conductivity of soils. Owing to the environmental concerns of conventional grout materials, such as cement-based or silicate-based materials, bio-inspired biogeotechnical approaches are considered to be new sustainable and environmentally friendly ground improvement methods. Biopolymers, which are excretory products from living organisms, have been shown to significantly reduce the hydraulic conductivity via pore-clogging and increase the strength of soils. To study the practical application of biopolymers for seepage and ground water control, in this study, we explored the injection capabilities of biopolymer-based grout materials in both linear aperture and particulate media (i.e., sand and glassbeads) considering different injection pressures, biopolymer concentrations, and flow channel geometries. The hydraulic conductivity control of a biopolymer-based grout material was evaluated after injection into sandy soil under confined boundary conditions. The results showed that the performance of xanthan gum injection was mainly affected by the injection pressure and pore geometry (e.g., porosity) inside the soil. Additionally, with an increase in the xanthan gum concentration, the injection efficiency diminished while the hydraulic conductivity reduction efficiency enhanced significantly. The results of this study provide the potential capabilities of injection grouting to be performed with biopolymer-based materials for field application.","PeriodicalId":12602,"journal":{"name":"Geomechanics and Engineering","volume":"25 1","pages":"31"},"PeriodicalIF":2.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/GAE.2021.25.1.031","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 9

Abstract

Injection grouting is one of the most common ground improvement practice to increase the strength and reduce the hydraulic conductivity of soils. Owing to the environmental concerns of conventional grout materials, such as cement-based or silicate-based materials, bio-inspired biogeotechnical approaches are considered to be new sustainable and environmentally friendly ground improvement methods. Biopolymers, which are excretory products from living organisms, have been shown to significantly reduce the hydraulic conductivity via pore-clogging and increase the strength of soils. To study the practical application of biopolymers for seepage and ground water control, in this study, we explored the injection capabilities of biopolymer-based grout materials in both linear aperture and particulate media (i.e., sand and glassbeads) considering different injection pressures, biopolymer concentrations, and flow channel geometries. The hydraulic conductivity control of a biopolymer-based grout material was evaluated after injection into sandy soil under confined boundary conditions. The results showed that the performance of xanthan gum injection was mainly affected by the injection pressure and pore geometry (e.g., porosity) inside the soil. Additionally, with an increase in the xanthan gum concentration, the injection efficiency diminished while the hydraulic conductivity reduction efficiency enhanced significantly. The results of this study provide the potential capabilities of injection grouting to be performed with biopolymer-based materials for field application.
生物聚合物基灌浆材料注射性能的评价
注浆是提高土体强度、降低土体导流性最常用的地基加固方法之一。由于传统的灌浆材料,如水泥基或硅酸盐基材料的环境问题,生物启发的生物岩土技术方法被认为是新的可持续和环境友好的地面改善方法。生物聚合物是生物体的排泄产物,已被证明可以通过堵塞孔隙显著降低水导率,并增加土壤的强度。为了研究生物聚合物在渗流和地下水控制方面的实际应用,在本研究中,我们考虑了不同的注入压力、生物聚合物浓度和流道几何形状,探索了生物聚合物基注浆材料在线性孔径和颗粒介质(即砂和玻璃珠)中的注入能力。研究了一种生物聚合物基灌浆材料在受限边界条件下注入砂土后的导流性能。结果表明:黄原胶注入的性能主要受注入压力和土壤内部孔隙度等孔隙几何形状的影响。此外,随着黄原胶浓度的增加,注入效率降低,而水力导率降低效率显著提高。本研究结果为生物聚合物基材料的注浆能力提供了潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geomechanics and Engineering
Geomechanics and Engineering ENGINEERING, CIVIL-ENGINEERING, GEOLOGICAL
CiteScore
5.20
自引率
25.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Geomechanics and Engineering aims at opening an easy access to the valuable source of information and providing an excellent publication channel for the global community of researchers in the geomechanics and its applications. Typical subjects covered by the journal include: - Analytical, computational, and experimental multiscale and interaction mechanics- Computational and Theoretical Geomechnics- Foundations- Tunneling- Earth Structures- Site Characterization- Soil-Structure Interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信