Effects of water saturation time on energy dissipation and burst propensity of coal specimens

IF 2.5 3区 工程技术 Q2 ENGINEERING, CIVIL
Xiaohan Yang, T. Ren, Lihai Tan, A. Remennikov
{"title":"Effects of water saturation time on energy dissipation and burst propensity of coal specimens","authors":"Xiaohan Yang, T. Ren, Lihai Tan, A. Remennikov","doi":"10.12989/GAE.2021.24.3.205","DOIUrl":null,"url":null,"abstract":"Water infusion has long been taken as an effective way to eliminate coal burst risk as coal properties can be loosen and soften by water infusion. However, not all industrial trials of water infusion for coal burst prevention have been necessarily effective in all situations as the effectiveness of this method can be affected by water infusion time, coal properties and the parameters of water injection. Hence, some fundamental issues including the effects of water infusion time on burst propensity and energy evolution need to be further discussed. In this paper, four groups of coal specimens with 0 day, 5 days, 10 days, and 15 days water saturation time are tested under uniaxial compression load with the application of AE monitoring. To comprehensively compare the burst behavior of coal specimens under different water saturation time, stress-strain curves, AE counts, fragmentation characteristics and burst propensity of these groups are analyzed. It was found by this research that sufficient water saturation can mitigate the burst behavior of coal samples while insufficient water infusion might cannot reach the burst mitigation aims.","PeriodicalId":12602,"journal":{"name":"Geomechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/GAE.2021.24.3.205","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

Abstract

Water infusion has long been taken as an effective way to eliminate coal burst risk as coal properties can be loosen and soften by water infusion. However, not all industrial trials of water infusion for coal burst prevention have been necessarily effective in all situations as the effectiveness of this method can be affected by water infusion time, coal properties and the parameters of water injection. Hence, some fundamental issues including the effects of water infusion time on burst propensity and energy evolution need to be further discussed. In this paper, four groups of coal specimens with 0 day, 5 days, 10 days, and 15 days water saturation time are tested under uniaxial compression load with the application of AE monitoring. To comprehensively compare the burst behavior of coal specimens under different water saturation time, stress-strain curves, AE counts, fragmentation characteristics and burst propensity of these groups are analyzed. It was found by this research that sufficient water saturation can mitigate the burst behavior of coal samples while insufficient water infusion might cannot reach the burst mitigation aims.
含水饱和时间对煤样能量耗散和爆裂倾向的影响
注水可以使煤的物性松动软化,长期以来被认为是消除冲击地压风险的有效途径。然而,并不是所有的工业试验都在所有情况下都有效,因为该方法的有效性受注水时间、煤的性质和注水参数的影响。因此,注水时间对破裂倾向和能量演化的影响等基本问题需要进一步探讨。本文采用声发射监测的方法,对饱和水时间分别为0天、5天、10天、15天的四组煤样进行了单轴压缩加载试验。为了综合比较不同含水饱和时间煤样的冲击行为,分析了不同含水饱和时间煤样的应力-应变曲线、声发射计数、破碎特征和冲击倾向。研究发现,足够的含水饱和度可以缓解煤样的冲击行为,而注水不足可能无法达到缓解冲击的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geomechanics and Engineering
Geomechanics and Engineering ENGINEERING, CIVIL-ENGINEERING, GEOLOGICAL
CiteScore
5.20
自引率
25.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Geomechanics and Engineering aims at opening an easy access to the valuable source of information and providing an excellent publication channel for the global community of researchers in the geomechanics and its applications. Typical subjects covered by the journal include: - Analytical, computational, and experimental multiscale and interaction mechanics- Computational and Theoretical Geomechnics- Foundations- Tunneling- Earth Structures- Site Characterization- Soil-Structure Interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信