Evaluation of grout penetration in single rock fracture using electrical resistivity

IF 2.5 3区 工程技术 Q2 ENGINEERING, CIVIL
Hangbok Lee, T. Oh, Jong-Won Lee
{"title":"Evaluation of grout penetration in single rock fracture using electrical resistivity","authors":"Hangbok Lee, T. Oh, Jong-Won Lee","doi":"10.12989/GAE.2021.24.1.001","DOIUrl":null,"url":null,"abstract":"In this study, a new approach using electrical resistivity measurement was proposed to detect grout penetration and to evaluate the grouting performance for such as waterproof efficiency in single rock fracture. For this purpose, an electrical resistivity monitoring system was designed to collect multi-channel data in real time. This was applied to a system for grout injection/penetration using a transparent fracture replica with various aperture sizes and water-cement mix ratio. The electrical resistivity was measured under various grout penetration conditions in real time, which results were directly compared to the visual observation images of grout penetration/distribution. Moreover, the grouting success status after the curing process was evaluated by measuring the electrical resistivity in relation to changes in frequency in fracture cells where grout injection and penetration were completed. Consequently, it was determined that the electrical resistivity monitoring system could be applied effectively to the detection of successful penetration of grouting into a target area and to actual field evaluation of the grouting performance and long-term stability of underground rock structures.","PeriodicalId":12602,"journal":{"name":"Geomechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/GAE.2021.24.1.001","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 4

Abstract

In this study, a new approach using electrical resistivity measurement was proposed to detect grout penetration and to evaluate the grouting performance for such as waterproof efficiency in single rock fracture. For this purpose, an electrical resistivity monitoring system was designed to collect multi-channel data in real time. This was applied to a system for grout injection/penetration using a transparent fracture replica with various aperture sizes and water-cement mix ratio. The electrical resistivity was measured under various grout penetration conditions in real time, which results were directly compared to the visual observation images of grout penetration/distribution. Moreover, the grouting success status after the curing process was evaluated by measuring the electrical resistivity in relation to changes in frequency in fracture cells where grout injection and penetration were completed. Consequently, it was determined that the electrical resistivity monitoring system could be applied effectively to the detection of successful penetration of grouting into a target area and to actual field evaluation of the grouting performance and long-term stability of underground rock structures.
用电阻率法评价单岩缝中注浆的穿透性
本文提出了一种利用电阻率测量方法检测注浆侵彻度并评价单岩体裂隙注浆防水效果等注浆性能的新方法。为此,设计了一套电阻率监测系统,实现多通道数据的实时采集。该系统使用了具有不同孔径大小和水灰混合比的透明裂缝模型进行注浆/渗透。实时测量不同灌浆侵入条件下的电阻率,并与灌浆侵入/分布的目视观测图像进行对比。此外,通过测量裂隙单元中电阻率与注浆贯入频率变化的关系,对固化过程后注浆成功状态进行评价。结果表明,电阻率监测系统可以有效地应用于注浆成功侵彻目标区域的探测,以及对地下岩体结构注浆性能和长期稳定性的现场实际评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geomechanics and Engineering
Geomechanics and Engineering ENGINEERING, CIVIL-ENGINEERING, GEOLOGICAL
CiteScore
5.20
自引率
25.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Geomechanics and Engineering aims at opening an easy access to the valuable source of information and providing an excellent publication channel for the global community of researchers in the geomechanics and its applications. Typical subjects covered by the journal include: - Analytical, computational, and experimental multiscale and interaction mechanics- Computational and Theoretical Geomechnics- Foundations- Tunneling- Earth Structures- Site Characterization- Soil-Structure Interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信