Conformally invariant scaling limits in planar critical percolation

IF 1.3 Q2 STATISTICS & PROBABILITY
Nike Sun
{"title":"Conformally invariant scaling limits in planar critical percolation","authors":"Nike Sun","doi":"10.1214//11-PS180","DOIUrl":null,"url":null,"abstract":"This is an introductory account of the emergence of conformal \ninvariance in the scaling limit of planar critical percolation. We give \nan exposition of Smirnov's theorem (2001) on the conformal invariance \nof crossing probabilities in site percolation on the triangular \nlattice. We also give an introductory account of Schramm-Loewner \nevolutions (SLE ĸ ), a one-parameter family of conformally \ninvariant random curves discovered by Schramm (2000). The article is \norganized around the aim of proving the result, due to Smirnov (2001) \nand to Camia and Newman (2007), that the percolation exploration path \nconverges in the scaling limit to chordal SLE 6 . No prior knowledge is assumed beyond some general complex analysis and probability theory.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2009-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214//11-PS180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 28

Abstract

This is an introductory account of the emergence of conformal invariance in the scaling limit of planar critical percolation. We give an exposition of Smirnov's theorem (2001) on the conformal invariance of crossing probabilities in site percolation on the triangular lattice. We also give an introductory account of Schramm-Loewner evolutions (SLE ĸ ), a one-parameter family of conformally invariant random curves discovered by Schramm (2000). The article is organized around the aim of proving the result, due to Smirnov (2001) and to Camia and Newman (2007), that the percolation exploration path converges in the scaling limit to chordal SLE 6 . No prior knowledge is assumed beyond some general complex analysis and probability theory.
平面临界渗流的保形不变尺度极限
这是在平面临界渗流的尺度极限中出现的保形不变性的介绍性说明。给出了关于三角格上点渗中交叉概率共形不变性的Smirnov定理(2001)。我们还介绍了Schramm- loewner进化(SLE),这是Schramm(2000)发现的一组共形不变随机曲线的单参数族。本文组织的目的是为了证明Smirnov(2001)和Camia和Newman(2007)的结果,即渗透勘探路径在尺度极限上收敛于弦索SLE 6。除了一些一般的复杂分析和概率论之外,不假设任何先验知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信