{"title":"Seismic fragility analysis of wood frame building in hilly region","authors":"S. Ghosh, S. Chakraborty","doi":"10.12989/EAS.2021.20.1.097","DOIUrl":null,"url":null,"abstract":"A comprehensive study on seismic performance of wood frame building in hilly regions is presented. Specifically, seismic fragility assessment of a typical wood frame building at various locations of the northeast region of India are demonstrated. A three-dimensional simplified model of the wood frame building is developed with due consideration to nonlinear behaviour of shear walls under lateral loads. In doing so, a trilinear model having improved capability to capture the force-deformation behaviour of shear walls including the strength degradation at higher deformations is proposed. The improved capability of the proposed model to capture the force-deformation behaviour of shear wall is validated by comparing with the existing experimental results. The structural demand values are obtained from nonlinear time history analysis (NLTHA) of the three-dimensional wood frame model considering the effect of uncertainty due to record to record variation of ground motions and structural parameters as well. The ground motion bins necessary for NLTHA are prepared based on the identified hazard level from probabilistic seismic hazard analysis of the considered locations. The maximum likelihood estimates of the lognormal fragility parameters are obtained from the observed failure cases and the seismic fragilities corresponding to different locations are estimated accordingly. The results of the numerical study show that the wood frame constructions commonly found in the region are likely to suffer minor cracking or damage in the shear walls under the earthquake occurrence corresponding to the estimated seismic hazard level; however, poses negligible risk against complete collapse of such structures.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":"20 1","pages":"97"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquakes and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/EAS.2021.20.1.097","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
A comprehensive study on seismic performance of wood frame building in hilly regions is presented. Specifically, seismic fragility assessment of a typical wood frame building at various locations of the northeast region of India are demonstrated. A three-dimensional simplified model of the wood frame building is developed with due consideration to nonlinear behaviour of shear walls under lateral loads. In doing so, a trilinear model having improved capability to capture the force-deformation behaviour of shear walls including the strength degradation at higher deformations is proposed. The improved capability of the proposed model to capture the force-deformation behaviour of shear wall is validated by comparing with the existing experimental results. The structural demand values are obtained from nonlinear time history analysis (NLTHA) of the three-dimensional wood frame model considering the effect of uncertainty due to record to record variation of ground motions and structural parameters as well. The ground motion bins necessary for NLTHA are prepared based on the identified hazard level from probabilistic seismic hazard analysis of the considered locations. The maximum likelihood estimates of the lognormal fragility parameters are obtained from the observed failure cases and the seismic fragilities corresponding to different locations are estimated accordingly. The results of the numerical study show that the wood frame constructions commonly found in the region are likely to suffer minor cracking or damage in the shear walls under the earthquake occurrence corresponding to the estimated seismic hazard level; however, poses negligible risk against complete collapse of such structures.
期刊介绍:
The Earthquakes and Structures, An International Journal, focuses on the effects of earthquakes on civil engineering structures. The journal will serve as a powerful repository of technical information and will provide a highimpact publication platform for the global community of researchers in the traditional, as well as emerging, subdisciplines of the broader earthquake engineering field. Specifically, some of the major topics covered by the Journal include: .. characterization of strong ground motions, .. quantification of earthquake demand and structural capacity, .. design of earthquake resistant structures and foundations, .. experimental and computational methods, .. seismic regulations and building codes, .. seismic hazard assessment, .. seismic risk mitigation, .. site effects and soil-structure interaction, .. assessment, repair and strengthening of existing structures, including historic structures and monuments, and .. emerging technologies including passive control technologies, structural monitoring systems, and cyberinfrastructure tools for seismic data management, experimental applications, early warning and response