{"title":"Online list coloring for signed graphs","authors":"Melissa Tupper, Jacob A. White","doi":"10.12958/adm1806","DOIUrl":null,"url":null,"abstract":"We generalize the notion of online list coloring to signed graphs. We define the online list chromatic number of a signed graph, and prove a generalization of Brooks' Theorem. We also give necessary and sufficient conditions for a signed graph to be degree paintable, or degree choosable. Finally, we classify the 2-list-colorable and 2-list-paintable signed graphs.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We generalize the notion of online list coloring to signed graphs. We define the online list chromatic number of a signed graph, and prove a generalization of Brooks' Theorem. We also give necessary and sufficient conditions for a signed graph to be degree paintable, or degree choosable. Finally, we classify the 2-list-colorable and 2-list-paintable signed graphs.