{"title":"Further combinatorial results for the symmetric inverse monoid","authors":"A. Laradji, A. Umar","doi":"10.12958/adm1793","DOIUrl":null,"url":null,"abstract":"Let In be the set of partial one-to-one transformations on the chain Xn={1,2, . . . , n} and, for each α in In, let h(α)=|Imα|, f(α)=|{x∈Xn:xα=x}| and w(α)=max(Imα). In this note, we obtain formulae involving binomial coefficients of F(n; p, m, k)=|{α ∈ In:h(α)=p∧f(α)=m∧w(α)=k}| and F(n;·, m, k)=|{α ∈ In:f(α)=m∧w(α)=k}| and analogous results on the set of partial derangements of In.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"14 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let In be the set of partial one-to-one transformations on the chain Xn={1,2, . . . , n} and, for each α in In, let h(α)=|Imα|, f(α)=|{x∈Xn:xα=x}| and w(α)=max(Imα). In this note, we obtain formulae involving binomial coefficients of F(n; p, m, k)=|{α ∈ In:h(α)=p∧f(α)=m∧w(α)=k}| and F(n;·, m, k)=|{α ∈ In:f(α)=m∧w(α)=k}| and analogous results on the set of partial derangements of In.