{"title":"Kazhdan constants and isomorphic graph pairs","authors":"M. Davila, Travis Hayes, Mike Krebs, Marcos Reyes","doi":"10.12958/adm1851","DOIUrl":null,"url":null,"abstract":"Let G be a finite group, and let Γ be a subset of G. The Kazhdan constant of the pair (G,Γ) is defined to bethe maximum distance we can guarantee that an arbitrary unitvector in an arbitrary nontrivial irreducible unitary representation space of G can be moved by some element of Γ. The Kazhdanconstant relates to the expansion properties of the Cayley graph generated by G and Γ, and has been much studied in this context. Different pairs (G1,Γ1) and (G2,Γ2) may give rise to isomorphic Cayley graphs. In this paper, we investigate the question: To whatextent is the Kazhdan constant a graph invariant? In other words, if the pairs yield isomorphic Cayley graphs, must the corresponding Kazhdan constants be equal? In our main theorem, we constructan infinite family of such pairs where the Kazhdan constants areunequal. Other relevant results are presented as well.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let G be a finite group, and let Γ be a subset of G. The Kazhdan constant of the pair (G,Γ) is defined to bethe maximum distance we can guarantee that an arbitrary unitvector in an arbitrary nontrivial irreducible unitary representation space of G can be moved by some element of Γ. The Kazhdanconstant relates to the expansion properties of the Cayley graph generated by G and Γ, and has been much studied in this context. Different pairs (G1,Γ1) and (G2,Γ2) may give rise to isomorphic Cayley graphs. In this paper, we investigate the question: To whatextent is the Kazhdan constant a graph invariant? In other words, if the pairs yield isomorphic Cayley graphs, must the corresponding Kazhdan constants be equal? In our main theorem, we constructan infinite family of such pairs where the Kazhdan constants areunequal. Other relevant results are presented as well.