Conjugate Laplacian eigenvalues of co-neighbour graphs

IF 0.3 Q4 MATHEMATICS, APPLIED
Somnath Paul
{"title":"Conjugate Laplacian eigenvalues of co-neighbour graphs","authors":"Somnath Paul","doi":"10.12958/adm1754","DOIUrl":null,"url":null,"abstract":"Let G be a simple graph of order n. A vertex subset is called independent if its elements are pairwise non-adjacent. Two vertices in G are co-neighbour vertices if they share the same neighbours. Clearly, if S is a set of pairwise co-neighbour vertices of a graph G, then S is an independent set of G. Let c=a+b√m and c=a−b√m, where a and b are two nonzero integers and m is a positive integer such that m is not a perfect square. In [M. Lepovic, On conjugate adjacency matrices of a graph, Discrete Mathematics, 307, 730-738, 2007], the author defined the matrix Ac(G)=[cij]n to be the conjugate adjacency matrix of G, if cij=c for any two adjacent vertices i and j, cij=c for any two nonadjacent vertices i and j,and cij= 0 if i=j. In [S. Paul, Conjugate Laplacian matrices of a graph, Discrete Mathematics, Algorithms and Applications, 10, 1850082, 2018], the author defined the conjugate Laplacian matrix of graphs and described various properties of its eigenvalues and eigenspaces. In this article, we determine certain properties of the conjugate Laplacian eigenvalues and the eigenvectors of a graph with co-neighbour vertices.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a simple graph of order n. A vertex subset is called independent if its elements are pairwise non-adjacent. Two vertices in G are co-neighbour vertices if they share the same neighbours. Clearly, if S is a set of pairwise co-neighbour vertices of a graph G, then S is an independent set of G. Let c=a+b√m and c=a−b√m, where a and b are two nonzero integers and m is a positive integer such that m is not a perfect square. In [M. Lepovic, On conjugate adjacency matrices of a graph, Discrete Mathematics, 307, 730-738, 2007], the author defined the matrix Ac(G)=[cij]n to be the conjugate adjacency matrix of G, if cij=c for any two adjacent vertices i and j, cij=c for any two nonadjacent vertices i and j,and cij= 0 if i=j. In [S. Paul, Conjugate Laplacian matrices of a graph, Discrete Mathematics, Algorithms and Applications, 10, 1850082, 2018], the author defined the conjugate Laplacian matrix of graphs and described various properties of its eigenvalues and eigenspaces. In this article, we determine certain properties of the conjugate Laplacian eigenvalues and the eigenvectors of a graph with co-neighbour vertices.
邻接图的共轭拉普拉斯特征值
设G是一个n阶的简单图。如果顶点子集的元素成对不相邻,则称为独立子集。G中的两个顶点是共邻顶点如果它们有相同的邻居。显然,如果S是图G的成对共邻顶点的集合,则S是G的独立集合,设c=a+b√m和c=a - b√m,其中a和b是两个非零整数,m是正整数,因此m不是完全平方。在[M。Lepovic,关于图的共轭邻接矩阵,离散数学,307,730-738,2007],定义矩阵Ac(G)=[cij]n为G的共轭邻接矩阵,当任意两个相邻顶点i和j cij=c,当任意两个非相邻顶点i和j cij=c,当i=j cij= 0。在[S。Paul,图的共轭拉普拉斯矩阵,离散数学,算法与应用,10,1850082,2018],作者定义了图的共轭拉普拉斯矩阵,并描述了其特征值和特征空间的各种性质。在本文中,我们确定了具有共邻顶点的图的共轭拉普拉斯特征值和特征向量的某些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra & Discrete Mathematics
Algebra & Discrete Mathematics MATHEMATICS, APPLIED-
CiteScore
0.50
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信