An automatic method for impervious surface area extraction by fusing high-resolution night light and Landsat OLI images

IF 0.6 4区 物理与天体物理 Q4 OPTICS
Tang Peng-fei, Miao Zelang, Lin Cong, Duan Pei-jun, Guo Shan-Chuan
{"title":"An automatic method for impervious surface area extraction by fusing high-resolution night light and Landsat OLI images","authors":"Tang Peng-fei, Miao Zelang, Lin Cong, Duan Pei-jun, Guo Shan-Chuan","doi":"10.11972/J.ISSN.1001-9014.2020.01.017","DOIUrl":null,"url":null,"abstract":"Supervised classification is a vital approach to extract impervious surface areas(ISA)from satellite images,but the training samples need to be provided through heavy manual work. To address it,this study proposed an automatic method to generate training samples from high-resolution night light data,considering that nighttime lights generated by human activities is strongly correlated with impervious surface. First,positive and negative samples for ISA were located according to the distribu‐ tion of nighttime lights. Second,the feature sets were constructed by calculating the spectral and tex‐ ture feature from the OLI images. Third,an ensemble ELM classifier was selected for ISA classifica‐ tion and extraction. Four large cities were selected as study areas to examine the performance of the 文章编号:1001-9014(2020)01-0128-09 DOI:10. 11972/j. issn. 1001-9014. 2020. 01. 017 收稿日期:2019-08-16,修回日期:2019-12-16 Received date:2019-08-16,Revised date:2019-12-16 基金项目:国家自然科学基金重点项目(41631176) Foundation items:Supported by the National Natural Science Foundation of China(41631176) 作者简介(Biography):唐鹏飞(1997-),男,安徽合肥人,博士生,主要研究领域为遥感图像智能处理 . E-mail:Sgos_tpf@smail. nju. edu. cn *通讯作者(Corresponding author):zelang. miao@csu. edu. cn;dupjrs@126. com 1期 唐鹏飞 等:融合高分夜光和Landsat OLI影像的不透水面自动提取方法 proposed method in different environment. The results show that the proposed method can automatical‐ ly and accurately acquire ISA with an overall accuracy higher than 93% and Kappa coefficient higher than 0. 87. Furthermore,comparative experiments by biophysical composition index(BCI)and classi‐ fication by manual sample were conducted to evaluate its superiority. The results show that our method has better separability for ISA and soil than the BCI. In general,the proposed method is superior to manual methods,except Harbin mostly because some impervious surfaces with weak light intensity are selected as negative samples.","PeriodicalId":50181,"journal":{"name":"红外与毫米波学报","volume":"39 1","pages":"128"},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"红外与毫米波学报","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.11972/J.ISSN.1001-9014.2020.01.017","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1

Abstract

Supervised classification is a vital approach to extract impervious surface areas(ISA)from satellite images,but the training samples need to be provided through heavy manual work. To address it,this study proposed an automatic method to generate training samples from high-resolution night light data,considering that nighttime lights generated by human activities is strongly correlated with impervious surface. First,positive and negative samples for ISA were located according to the distribu‐ tion of nighttime lights. Second,the feature sets were constructed by calculating the spectral and tex‐ ture feature from the OLI images. Third,an ensemble ELM classifier was selected for ISA classifica‐ tion and extraction. Four large cities were selected as study areas to examine the performance of the 文章编号:1001-9014(2020)01-0128-09 DOI:10. 11972/j. issn. 1001-9014. 2020. 01. 017 收稿日期:2019-08-16,修回日期:2019-12-16 Received date:2019-08-16,Revised date:2019-12-16 基金项目:国家自然科学基金重点项目(41631176) Foundation items:Supported by the National Natural Science Foundation of China(41631176) 作者简介(Biography):唐鹏飞(1997-),男,安徽合肥人,博士生,主要研究领域为遥感图像智能处理 . E-mail:Sgos_tpf@smail. nju. edu. cn *通讯作者(Corresponding author):zelang. miao@csu. edu. cn;dupjrs@126. com 1期 唐鹏飞 等:融合高分夜光和Landsat OLI影像的不透水面自动提取方法 proposed method in different environment. The results show that the proposed method can automatical‐ ly and accurately acquire ISA with an overall accuracy higher than 93% and Kappa coefficient higher than 0. 87. Furthermore,comparative experiments by biophysical composition index(BCI)and classi‐ fication by manual sample were conducted to evaluate its superiority. The results show that our method has better separability for ISA and soil than the BCI. In general,the proposed method is superior to manual methods,except Harbin mostly because some impervious surfaces with weak light intensity are selected as negative samples.
一种融合高分辨率夜光和Landsat OLI图像的不透水面自动提取方法
监督分类是从卫星图像中提取不透水面区域的重要方法,但训练样本需要通过大量的人工工作来提供。为此,考虑到人类活动产生的夜间灯光与不透水地表密切相关,本研究提出了一种从高分辨率夜间灯光数据中自动生成训练样本的方法。首先,根据夜间灯光的分布定位ISA阳性和阴性样品。其次,通过计算OLI图像的光谱特征和纹理特征来构建特征集;第三,选择集成ELM分类器进行ISA分类和提取。选取4个大城市作为研究区域,检验该系统的绩效。中文译文:中文译文:01-0128-09 (2020)DOI:10。11972 / j。石头。1001 - 9014。2020. 01. 017收稿日期:2019-08-16,修回日期:2019-12-16收到日期:2019-08-16,修订日期:2019-12-16基金项目:国家自然科学基金重点项目(41631176)基金会项目:支持由中国国家自然科学基金(41631176)作者简介(传记):唐鹏飞(1997 -),男,安徽合肥人,博士生,主要研究领域为遥感图像智能处理。电子邮件:Sgos_tpf@smail。nju。edu。cn *通讯作者:泽朗。miao@csu。edu。cn; dupjrs@126。com 1期唐鹏飞等:融合高分夜光和陆地卫星奥利影像的不透水面自动提取方法该方法在不同的环境。结果表明,该方法能够自动准确地获取ISA,总体精度大于93%,Kappa系数大于0。87. 并通过生物物理成分指数(BCI)和人工样本分类的对比实验来评价其优越性。结果表明,该方法对ISA和土壤的分离性优于BCI。总的来说,本文方法优于人工方法,除了哈尔滨,主要是因为选择了一些光强较弱的不透水表面作为负样本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
4258
审稿时长
2.9 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信