An analytical approach for buckling of functionally graded plates

IF 1.9 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
T. H. Daouadji, B. Adim
{"title":"An analytical approach for buckling of functionally graded plates","authors":"T. H. Daouadji, B. Adim","doi":"10.12989/AMR.2016.5.3.141","DOIUrl":null,"url":null,"abstract":". In this paper, an efficient and simple refined theory is presented for buckling analysis of functionally graded plates. The theory, which has strong similarity with classical plate theory in many aspects, accounts for a quadratic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The mechanical properties of functionally graded material are assumed to vary according to a power law distribution of the volume fraction of the constituents. Governing equations are derived from the principle of minimum total potential energy. The closed-form solutions of rectangular plates are obtained. Comparison studies are performed to verify the validity of present results. The effects of loading conditions and variations of power of functionally graded material, modulus ratio, aspect ratio, and thickness ratio on the critical buckling load of functionally graded plates are investigated and discussed.","PeriodicalId":46242,"journal":{"name":"Advances in Materials Research-An International Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2016-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Research-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12989/AMR.2016.5.3.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

Abstract

. In this paper, an efficient and simple refined theory is presented for buckling analysis of functionally graded plates. The theory, which has strong similarity with classical plate theory in many aspects, accounts for a quadratic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The mechanical properties of functionally graded material are assumed to vary according to a power law distribution of the volume fraction of the constituents. Governing equations are derived from the principle of minimum total potential energy. The closed-form solutions of rectangular plates are obtained. Comparison studies are performed to verify the validity of present results. The effects of loading conditions and variations of power of functionally graded material, modulus ratio, aspect ratio, and thickness ratio on the critical buckling load of functionally graded plates are investigated and discussed.
功能梯度板屈曲的分析方法
. 本文提出了一种简单有效的功能梯度板屈曲分析的精细化理论。该理论在不使用剪切修正因子的情况下,考虑了横向剪切应变在厚度上的二次变化,满足板的上下表面的零牵引边界条件,在许多方面与经典板理论有很强的相似性。假设功能梯度材料的力学性能根据成分体积分数的幂律分布而变化。控制方程由最小总势能原理导出。得到了矩形板的闭型解。进行比较研究以验证目前结果的有效性。研究了加载条件和功能梯度材料功率、模量比、长径比、厚度比的变化对功能梯度板临界屈曲载荷的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Materials Research-An International Journal
Advances in Materials Research-An International Journal MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.50
自引率
27.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信