Fusion of CNN-QCSO for Content Based Image Retrieval

IF 0.9 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Sarva Naveen Kumar, Ch. Sumanth Kumar
{"title":"Fusion of CNN-QCSO for Content Based Image Retrieval","authors":"Sarva Naveen Kumar, Ch. Sumanth Kumar","doi":"10.12720/jait.14.4.668-673","DOIUrl":null,"url":null,"abstract":"—As the growth of digital images is been widely increased over the last few years on internet, the retrieval of required image is been a big problem. In this paper, a combinational approach is designed for retrieval of image form big data. The approach is CNN-QCSO, one is deep learning technique, i.e., Convolutional Neural Network (CNN) and another is optimization technique, i.e., Quantm Cuckoo Search Optimization (QCSO). CNN is used for extracting of features for the given query image and optimization techniques helps in achieving the global best features by changing the internal parameters of processing layers. The Content Based Image Retrieval (CBIR) is proposed in this study. In big data analysis, CNN is vastly used and have many applications like identifying objects, medical imaging fields, security analysis and so on. In this paper, the combination of two efficient techniques helps in identifying the image and achieves good results. The results shows that CNN alone achieves an accuracy of 94.8% and when combined with QCSO the rate of accuracy improved by 1.6%. The entire experimental values are evaluated using matlab tool.","PeriodicalId":36452,"journal":{"name":"Journal of Advances in Information Technology","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12720/jait.14.4.668-673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

—As the growth of digital images is been widely increased over the last few years on internet, the retrieval of required image is been a big problem. In this paper, a combinational approach is designed for retrieval of image form big data. The approach is CNN-QCSO, one is deep learning technique, i.e., Convolutional Neural Network (CNN) and another is optimization technique, i.e., Quantm Cuckoo Search Optimization (QCSO). CNN is used for extracting of features for the given query image and optimization techniques helps in achieving the global best features by changing the internal parameters of processing layers. The Content Based Image Retrieval (CBIR) is proposed in this study. In big data analysis, CNN is vastly used and have many applications like identifying objects, medical imaging fields, security analysis and so on. In this paper, the combination of two efficient techniques helps in identifying the image and achieves good results. The results shows that CNN alone achieves an accuracy of 94.8% and when combined with QCSO the rate of accuracy improved by 1.6%. The entire experimental values are evaluated using matlab tool.
融合CNN-QCSO的基于内容的图像检索
近年来,随着互联网上数字图像的增长,所需图像的检索成为一个大问题。本文设计了一种用于大数据图像检索的组合方法。方法是CNN-QCSO,一种是深度学习技术,即卷积神经网络(CNN),另一种是优化技术,即量子布谷鸟搜索优化(QCSO)。使用CNN对给定的查询图像进行特征提取,优化技术通过改变处理层的内部参数来实现全局最优特征。本文提出了一种基于内容的图像检索方法。在大数据分析中,CNN被广泛使用,在物体识别、医学成像领域、安全分析等方面都有很多应用。在本文中,两种有效技术的结合有助于图像识别,并取得了良好的效果。结果表明,CNN单独使用时准确率达到94.8%,与QCSO结合使用时准确率提高1.6%。利用matlab工具对整个实验值进行了计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advances in Information Technology
Journal of Advances in Information Technology Computer Science-Information Systems
CiteScore
4.20
自引率
20.00%
发文量
46
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信