An Efficient Model to Predict Network Packets in TVDC Using Machine Learning

Pub Date : 2023-01-01 DOI:10.12720/jait.14.3.523-531
Ashmeet Kaur Duggal, Meenu Dave
{"title":"An Efficient Model to Predict Network Packets in TVDC Using Machine Learning","authors":"Ashmeet Kaur Duggal, Meenu Dave","doi":"10.12720/jait.14.3.523-531","DOIUrl":null,"url":null,"abstract":"—Internet-based computing allows the sharing of on-demand resources. This computing technique includes data processing and storage to globally separated machines, known as Cloud Computing. Confidentiality and integrity of data on the cloud are vital. The key constraints include effective access control, accessibility, and transmission of files, in a dynamic cloud environment, seeking a Trusted Virtual Data Center (TVDC). So, to overcome challenges such as data security and integrity due to exponentially growing data size, this research paper aims to develop a prediction model using the machine learning approach, which identifies the type of incoming packet on the TVDC. Alternatively, in other words, this system predicts whether the incoming packets on the server in the cloud environment are malicious or not, using the machine learning approach. This research explored artificial intelligence verticals in building systems with learned data structures for efficient data access. This research describes the implementation of machine learning algorithms for an efficient model’s prediction of the type of incoming packet on the server. It has achieved 88% accuracy using the Gradient Boosted Tree classifier. Also, in this study, the author compares the results of two algorithms, Decision Tree and Gradient Boosted Tree, and finally selects the most optimal for this prediction.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12720/jait.14.3.523-531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

—Internet-based computing allows the sharing of on-demand resources. This computing technique includes data processing and storage to globally separated machines, known as Cloud Computing. Confidentiality and integrity of data on the cloud are vital. The key constraints include effective access control, accessibility, and transmission of files, in a dynamic cloud environment, seeking a Trusted Virtual Data Center (TVDC). So, to overcome challenges such as data security and integrity due to exponentially growing data size, this research paper aims to develop a prediction model using the machine learning approach, which identifies the type of incoming packet on the TVDC. Alternatively, in other words, this system predicts whether the incoming packets on the server in the cloud environment are malicious or not, using the machine learning approach. This research explored artificial intelligence verticals in building systems with learned data structures for efficient data access. This research describes the implementation of machine learning algorithms for an efficient model’s prediction of the type of incoming packet on the server. It has achieved 88% accuracy using the Gradient Boosted Tree classifier. Also, in this study, the author compares the results of two algorithms, Decision Tree and Gradient Boosted Tree, and finally selects the most optimal for this prediction.
分享
查看原文
基于机器学习的TVDC网络数据包预测模型
-基于互联网的计算允许按需资源共享。这种计算技术包括数据处理和存储到全局分离的机器,称为云计算。云数据的保密性和完整性至关重要。关键的约束条件包括有效的访问控制、文件的可访问性和传输,在动态的云环境中,寻求可信的虚拟数据中心(TVDC)。因此,为了克服由于数据规模呈指数级增长而带来的数据安全和完整性等挑战,本研究论文旨在使用机器学习方法开发一种预测模型,该模型可以识别TVDC上传入数据包的类型。或者,换句话说,该系统使用机器学习方法预测云环境中服务器上的传入数据包是否是恶意的。本研究探索了人工智能在构建具有学习数据结构的系统中的垂直方向,以实现有效的数据访问。本研究描述了机器学习算法的实现,用于有效模型预测服务器上传入数据包的类型。使用梯度增强树分类器,它达到了88%的准确率。此外,在本研究中,作者比较了决策树和梯度提升树两种算法的结果,最终选择了最优的预测算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信