Multi-class Classification Approach for Retinal Diseases

IF 0.9 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Mario G. Gualsaqui, Stefany M. Cuenca, Ibeth L. Rosero, D. A. Almeida, C. Cadena, Fernando Villalba, Jonathan D. Cruz
{"title":"Multi-class Classification Approach for Retinal Diseases","authors":"Mario G. Gualsaqui, Stefany M. Cuenca, Ibeth L. Rosero, D. A. Almeida, C. Cadena, Fernando Villalba, Jonathan D. Cruz","doi":"10.12720/jait.14.3.392-398","DOIUrl":null,"url":null,"abstract":"—Early detection of the diagnosis of some diseases in the retina of the eye can improve the chances of cure and also prevent blindness. In this study, a Convolutional Neural Network (CNN) with different architectures (Scratch Model, GoogleNet, VGG, ResNet, MobileNet and DenseNet) was created to make a comparison between them and find the one with the best percentage of accuracy and less loss to generate the model for a better automatic classification of images using a MURED database containing retinal images already labeled previously with their respective disease. The results show that the model with the ResNet architecture variant InceptionResNetV2 has an accuracy of 49.85%.","PeriodicalId":36452,"journal":{"name":"Journal of Advances in Information Technology","volume":"36 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12720/jait.14.3.392-398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

—Early detection of the diagnosis of some diseases in the retina of the eye can improve the chances of cure and also prevent blindness. In this study, a Convolutional Neural Network (CNN) with different architectures (Scratch Model, GoogleNet, VGG, ResNet, MobileNet and DenseNet) was created to make a comparison between them and find the one with the best percentage of accuracy and less loss to generate the model for a better automatic classification of images using a MURED database containing retinal images already labeled previously with their respective disease. The results show that the model with the ResNet architecture variant InceptionResNetV2 has an accuracy of 49.85%.
视网膜疾病的多分类方法
-对某些视网膜疾病的早期发现诊断可以提高治愈的机会,也可以预防失明。在本研究中,我们创建了一个具有不同架构(Scratch Model、GoogleNet、VGG、ResNet、MobileNet和DenseNet)的卷积神经网络(CNN),对它们进行比较,找到准确率最高、损失最小的一个,并生成模型,以便使用包含先前已标记为各自疾病的视网膜图像的MURED数据库对图像进行更好的自动分类。结果表明,采用ResNet架构变体InceptionResNetV2的模型准确率为49.85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advances in Information Technology
Journal of Advances in Information Technology Computer Science-Information Systems
CiteScore
4.20
自引率
20.00%
发文量
46
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信