{"title":"Capacity Optimization and Operational Strategy of the Wind-Energy Storage Hybrid Systems for Energy Dispatching","authors":"C. Sun, Y. Yuan, S. Choi, M. Li, X. Zhang, Y. Cao","doi":"10.13335/J.1000-3673.PST.2015.08.007","DOIUrl":null,"url":null,"abstract":"Wind power output fluctuation brings a lot of negative influences on utility grid as a result of increasing penetration level of wind power. A supercapacitor-battery hybrid storage system is proposed to balance the wind power and planned export power of the wind farm. Firstly, using empirical mode decomposition(EMD), the difference between planned export power and the original wind power(unbalanced power, UP) is analyzed to obtain the intrinsic mode functions(IMFs). Secondly, a mathematic method is then developed to confirm a so-called gap frequency to decompose the unbalanced power into high and low frequency components based on the concept of minimum overlap energy. Unbalanced power smoothing is then achieved by dispatching the powers of supercapatiors and batteries to compensate the high- and low-frequency IMFs according to the characteristics of supercapacitor and batteries respectively. Finally, based on a set of data acquired from an existing wind farm, a hybrid storage system(HSS) is designed aiming at minimizing the capital cost and also can make wind power approach the planned export power of the wind farm in a great extent, numerical analysis verifies the efficiency of the developed method.","PeriodicalId":20420,"journal":{"name":"电网技术","volume":"39 1","pages":"2107-2114"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"电网技术","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13335/J.1000-3673.PST.2015.08.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
Wind power output fluctuation brings a lot of negative influences on utility grid as a result of increasing penetration level of wind power. A supercapacitor-battery hybrid storage system is proposed to balance the wind power and planned export power of the wind farm. Firstly, using empirical mode decomposition(EMD), the difference between planned export power and the original wind power(unbalanced power, UP) is analyzed to obtain the intrinsic mode functions(IMFs). Secondly, a mathematic method is then developed to confirm a so-called gap frequency to decompose the unbalanced power into high and low frequency components based on the concept of minimum overlap energy. Unbalanced power smoothing is then achieved by dispatching the powers of supercapatiors and batteries to compensate the high- and low-frequency IMFs according to the characteristics of supercapacitor and batteries respectively. Finally, based on a set of data acquired from an existing wind farm, a hybrid storage system(HSS) is designed aiming at minimizing the capital cost and also can make wind power approach the planned export power of the wind farm in a great extent, numerical analysis verifies the efficiency of the developed method.
期刊介绍:
"Power System Technology" (monthly) was founded in 1957. It is a comprehensive academic journal in the field of energy and power, supervised and sponsored by the State Grid Corporation of China. It is published by the Power System Technology Magazine Co., Ltd. of the China Electric Power Research Institute. It is publicly distributed at home and abroad and is included in 12 famous domestic and foreign literature databases such as the Engineering Index (EI) and the National Chinese Core Journals.
The purpose of "Power System Technology" is to serve the national innovation-driven development strategy, promote scientific and technological progress in my country's energy and power fields, and promote the application of new technologies and new products. "Power System Technology" has adhered to the publishing characteristics of combining "theoretical innovation with applied practice" for many years, and the scope of manuscript selection covers the fields of power generation, transmission, distribution, and electricity consumption.