Shape optimization problem for transient Non-Newtonian fluid in hybridized discontinuous Galerkin method

IF 0.7 Q4 MECHANICS
T. Nakazawa
{"title":"Shape optimization problem for transient Non-Newtonian fluid in hybridized discontinuous Galerkin method","authors":"T. Nakazawa","doi":"10.1299/jfst.2021jfst0019","DOIUrl":null,"url":null,"abstract":"This paper presents a shape optimazation method for transient Non-Newtonian fluid which is playing important roles of calculating blood flow, oil flow and so on. So far, the author constructed a shape optimization problem for suppressing transient Newtonian fluid by using Snapshot POD, and extends it toward to Non-Newtonian fluid, here. For such the suggested shape optimization, the eigenvalue in Snapshot POD is defined as a cost function, where the constraint functions are the Oldroyd-B model, and an eigenvalue equation of Snapshot POD. For numerical calculations, a two–dimensional cavity flow with a disk-shaped isolated body is adopted for an initial domain. To descritize the Oldroyd-B model spatially, Galerkin Method (GM) and Hybridized Discontinuous Galerkin Method (HDGM) are used to compare numerical accuracies. As a result, it is considered that HDGM is able to obtain better solutions than GM during numerical validations. Finally, eigenvalues of Snapshot POD are compared in the initial and optimal domains obtained by HDGM.","PeriodicalId":44704,"journal":{"name":"Journal of Fluid Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/jfst.2021jfst0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a shape optimazation method for transient Non-Newtonian fluid which is playing important roles of calculating blood flow, oil flow and so on. So far, the author constructed a shape optimization problem for suppressing transient Newtonian fluid by using Snapshot POD, and extends it toward to Non-Newtonian fluid, here. For such the suggested shape optimization, the eigenvalue in Snapshot POD is defined as a cost function, where the constraint functions are the Oldroyd-B model, and an eigenvalue equation of Snapshot POD. For numerical calculations, a two–dimensional cavity flow with a disk-shaped isolated body is adopted for an initial domain. To descritize the Oldroyd-B model spatially, Galerkin Method (GM) and Hybridized Discontinuous Galerkin Method (HDGM) are used to compare numerical accuracies. As a result, it is considered that HDGM is able to obtain better solutions than GM during numerical validations. Finally, eigenvalues of Snapshot POD are compared in the initial and optimal domains obtained by HDGM.
瞬态非牛顿流体的杂化不连续伽辽金法形状优化问题
本文提出了一种瞬态非牛顿流体的形状优化方法,该方法在血流、油流量等计算中起着重要的作用。至此,作者利用Snapshot POD构造了一个抑制瞬态牛顿流体的形状优化问题,并将其推广到非牛顿流体,这里。对于这种建议的形状优化,将Snapshot POD中的特征值定义为代价函数,其中约束函数为Oldroyd-B模型,为Snapshot POD的特征值方程。在数值计算中,初始域采用具有盘状孤立体的二维空腔流。为了对Oldroyd-B模型进行空间描述,采用Galerkin法(GM)和杂交不连续Galerkin法(HDGM)比较数值精度。因此,在数值验证中,HDGM能够获得比GM更好的解。最后,在HDGM得到的初始域和最优域上比较了快照POD的特征值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
2
期刊介绍: Journal of Fluid Science and Technology (JFST) is an international journal published by the Fluids Engineering Division in the Japan Society of Mechanical Engineers (JSME). JSME had been publishing Bulletin of the JSME (1958-1986) and JSME International Journal (1987-2006) by the continuous volume numbers. Considering the recent circumstances of the academic journals in the field of mechanical engineering, JSME reorganized the journal editorial system. Namely, JSME discontinued former International Journals and projected new publications from the divisions belonging to JSME. The Fluids Engineering Division acted quickly among all divisions and launched the premiere issue of JFST in January 2006. JFST aims at contributing to the development of fluid engineering by publishing superior papers of the scientific and technological studies in this field. The editorial committee will make all efforts for promoting strictly fair and speedy review for submitted articles. All JFST papers will be available for free at the website of J-STAGE (http://www.i-product.biz/jsme/eng/), which is hosted by Japan Science and Technology Agency (JST). Thus papers can be accessed worldwide by lead scientists and engineers. In addition, authors can express their results variedly by high-quality color drawings and pictures. JFST invites the submission of original papers on wide variety of fields related to fluid mechanics and fluid engineering. The topics to be treated should be corresponding to the following keywords of the Fluids Engineering Division of the JSME. Basic keywords include: turbulent flow; multiphase flow; non-Newtonian fluids; functional fluids; quantum and molecular dynamics; wave; acoustics; vibration; free surface flows; cavitation; fluid machinery; computational fluid dynamics (CFD); experimental fluid dynamics (EFD); Bio-fluid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信