Fabrication of liquid-core fiber-optic structure for large-area CO2 sensing using ionic liquids

IF 0.7 Q4 MECHANICS
M. Ohkura, H. Takana, F. Ohuchi, R. Furukawa
{"title":"Fabrication of liquid-core fiber-optic structure for large-area CO2 sensing using ionic liquids","authors":"M. Ohkura, H. Takana, F. Ohuchi, R. Furukawa","doi":"10.1299/jfst.2021jfst0004","DOIUrl":null,"url":null,"abstract":"Abstract Among the ionic liquids (ILs) that are known for their CO2 absorption properties, the optical properties of 1ethyl-3-methylimidazolium acetate ([emim][Ac]) and 1-butyl-3-methylimidazolium acetate ([bmim][Ac]) have been investigated with the aim of assessing their suitability for use in a CO2 sensor with a liquid-core fiber-optic structure. Fiber-optic sensors offer multiple benefits, including a large-area sensing capability and immunity to electromagnetic interference. In these two ILs with their different cation alkyl chain extensions, similar levels of change in the refractive index were observed for both [emim][Ac] and [bmim][Ac]; this change was demonstrated to lead to a change in the numerical aperture of a waveguide equipped with an [emim][Ac] core with a maximum value of 0.017787. Waveguide samples were fabricated using both [emim][Ac] and [bmim][Ac] and the output spectra of these samples were compared in terms of their liquid absorption characteristics, which were measured before the samples were packed in a gas-permeable Teflon®AF cladding tube. The liquid-core waveguides demonstrated successful light transmission over a length of 10 cm that agreed with the absorption characteristics of each of the core liquids. The CO2 concentration level inside the core liquid was believed to cause the transparency of the waveguide to deteriorate as a result of bubble formation. The growth of the CO2 bubbles is irreversible and is assumed to be promoted by a kinetic stimulus and some other factors. The ILs comparison considered in this study will be useful for further development of the liquid-core waveguidestructured CO2 sensor. The transmission length of the sensor could be elongated by optimizing both the waveguide and the core IL.","PeriodicalId":44704,"journal":{"name":"Journal of Fluid Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/jfst.2021jfst0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Among the ionic liquids (ILs) that are known for their CO2 absorption properties, the optical properties of 1ethyl-3-methylimidazolium acetate ([emim][Ac]) and 1-butyl-3-methylimidazolium acetate ([bmim][Ac]) have been investigated with the aim of assessing their suitability for use in a CO2 sensor with a liquid-core fiber-optic structure. Fiber-optic sensors offer multiple benefits, including a large-area sensing capability and immunity to electromagnetic interference. In these two ILs with their different cation alkyl chain extensions, similar levels of change in the refractive index were observed for both [emim][Ac] and [bmim][Ac]; this change was demonstrated to lead to a change in the numerical aperture of a waveguide equipped with an [emim][Ac] core with a maximum value of 0.017787. Waveguide samples were fabricated using both [emim][Ac] and [bmim][Ac] and the output spectra of these samples were compared in terms of their liquid absorption characteristics, which were measured before the samples were packed in a gas-permeable Teflon®AF cladding tube. The liquid-core waveguides demonstrated successful light transmission over a length of 10 cm that agreed with the absorption characteristics of each of the core liquids. The CO2 concentration level inside the core liquid was believed to cause the transparency of the waveguide to deteriorate as a result of bubble formation. The growth of the CO2 bubbles is irreversible and is assumed to be promoted by a kinetic stimulus and some other factors. The ILs comparison considered in this study will be useful for further development of the liquid-core waveguidestructured CO2 sensor. The transmission length of the sensor could be elongated by optimizing both the waveguide and the core IL.
离子液体制备大面积CO2传感液芯光纤结构
在以CO2吸收特性而闻名的离子液体(ILs)中,研究了1-乙基-3-甲基咪唑乙酸酯([emim][Ac])和1-丁基-3-甲基咪唑乙酸酯([bmim][Ac])的光学特性,目的是评估它们在具有液芯光纤结构的CO2传感器中的适用性。光纤传感器具有多种优点,包括大面积传感能力和抗电磁干扰能力。在这两种阳离子烷基链延伸不同的离子中,[emim][Ac]和[bmim][Ac]的折射率变化程度相似;这种变化被证明会导致装有[emim][Ac]芯的波导数值孔径的变化,其最大值为0.017787。用[emim][Ac]和[bmim][Ac]制备了波导样品,并比较了这些样品的输出光谱的液体吸收特性,然后将样品装在可透气的Teflon®AF包层管中。液芯波导成功地传输了超过10厘米的光,这与每种核心液体的吸收特性一致。据信,核心液体内的二氧化碳浓度水平会导致波导的透明度因气泡形成而恶化。CO2气泡的生长是不可逆的,并被认为是由动力刺激和一些其他因素促进的。本研究所考虑的ILs比较将对液芯波导结构CO2传感器的进一步开发有帮助。通过对波导和核心IL进行优化,可以延长传感器的传输长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
2
期刊介绍: Journal of Fluid Science and Technology (JFST) is an international journal published by the Fluids Engineering Division in the Japan Society of Mechanical Engineers (JSME). JSME had been publishing Bulletin of the JSME (1958-1986) and JSME International Journal (1987-2006) by the continuous volume numbers. Considering the recent circumstances of the academic journals in the field of mechanical engineering, JSME reorganized the journal editorial system. Namely, JSME discontinued former International Journals and projected new publications from the divisions belonging to JSME. The Fluids Engineering Division acted quickly among all divisions and launched the premiere issue of JFST in January 2006. JFST aims at contributing to the development of fluid engineering by publishing superior papers of the scientific and technological studies in this field. The editorial committee will make all efforts for promoting strictly fair and speedy review for submitted articles. All JFST papers will be available for free at the website of J-STAGE (http://www.i-product.biz/jsme/eng/), which is hosted by Japan Science and Technology Agency (JST). Thus papers can be accessed worldwide by lead scientists and engineers. In addition, authors can express their results variedly by high-quality color drawings and pictures. JFST invites the submission of original papers on wide variety of fields related to fluid mechanics and fluid engineering. The topics to be treated should be corresponding to the following keywords of the Fluids Engineering Division of the JSME. Basic keywords include: turbulent flow; multiphase flow; non-Newtonian fluids; functional fluids; quantum and molecular dynamics; wave; acoustics; vibration; free surface flows; cavitation; fluid machinery; computational fluid dynamics (CFD); experimental fluid dynamics (EFD); Bio-fluid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信