Shiho Hirokawa, Kaoruko Eto, K. Fukagata, N. Tokugawa
{"title":"Experimental investigation on friction drag reduction on an airfoil by passive blowing","authors":"Shiho Hirokawa, Kaoruko Eto, K. Fukagata, N. Tokugawa","doi":"10.1299/jfst.2020jfst0011","DOIUrl":null,"url":null,"abstract":"Friction drag reduction effect of a passive blowing on a Clark-Y airfoil is investigated. Uniform blowing, conducted in a wall-normal direction on a relatively wide surface, is generally known as an active control method for reduction of turbulent skin friction drag. In the present study, uniform blowing is passively driven by the pressure difference on a wing surface between suction and blowing regions. The suction and the blowing regions are respectively set around the leading edge and the rear part of the upper surface of the Clark-Y airfoil in order to ensure a sufficient pressure difference for passive blowing. The Reynolds number based on the chord length is 0.65×106 and 1.55×106. The angle of attack is set to 0◦ and 6◦. The mean streamwise velocity profiles on the blowing region and the downstream, measured by a traversed hot-wire anemometry, are observed to shift away from the wall by passive blowing. This behavior qualitatively suggests reduction of local skin friction on the wing surface. A quantitative assessment of the friction drag is performed using the law of the wall accounting for pressure gradients (Nickels, 2004), coupled with a modified Stevenson’s law (Vigdorovich, 2016) to account for the weak blowing. From this assessment, the local friction drag reduction effect of passive blowing is estimated to reach 4% − 23%.","PeriodicalId":44704,"journal":{"name":"Journal of Fluid Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1299/jfst.2020jfst0011","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/jfst.2020jfst0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 6
Abstract
Friction drag reduction effect of a passive blowing on a Clark-Y airfoil is investigated. Uniform blowing, conducted in a wall-normal direction on a relatively wide surface, is generally known as an active control method for reduction of turbulent skin friction drag. In the present study, uniform blowing is passively driven by the pressure difference on a wing surface between suction and blowing regions. The suction and the blowing regions are respectively set around the leading edge and the rear part of the upper surface of the Clark-Y airfoil in order to ensure a sufficient pressure difference for passive blowing. The Reynolds number based on the chord length is 0.65×106 and 1.55×106. The angle of attack is set to 0◦ and 6◦. The mean streamwise velocity profiles on the blowing region and the downstream, measured by a traversed hot-wire anemometry, are observed to shift away from the wall by passive blowing. This behavior qualitatively suggests reduction of local skin friction on the wing surface. A quantitative assessment of the friction drag is performed using the law of the wall accounting for pressure gradients (Nickels, 2004), coupled with a modified Stevenson’s law (Vigdorovich, 2016) to account for the weak blowing. From this assessment, the local friction drag reduction effect of passive blowing is estimated to reach 4% − 23%.
期刊介绍:
Journal of Fluid Science and Technology (JFST) is an international journal published by the Fluids Engineering Division in the Japan Society of Mechanical Engineers (JSME). JSME had been publishing Bulletin of the JSME (1958-1986) and JSME International Journal (1987-2006) by the continuous volume numbers. Considering the recent circumstances of the academic journals in the field of mechanical engineering, JSME reorganized the journal editorial system. Namely, JSME discontinued former International Journals and projected new publications from the divisions belonging to JSME. The Fluids Engineering Division acted quickly among all divisions and launched the premiere issue of JFST in January 2006. JFST aims at contributing to the development of fluid engineering by publishing superior papers of the scientific and technological studies in this field. The editorial committee will make all efforts for promoting strictly fair and speedy review for submitted articles. All JFST papers will be available for free at the website of J-STAGE (http://www.i-product.biz/jsme/eng/), which is hosted by Japan Science and Technology Agency (JST). Thus papers can be accessed worldwide by lead scientists and engineers. In addition, authors can express their results variedly by high-quality color drawings and pictures. JFST invites the submission of original papers on wide variety of fields related to fluid mechanics and fluid engineering. The topics to be treated should be corresponding to the following keywords of the Fluids Engineering Division of the JSME. Basic keywords include: turbulent flow; multiphase flow; non-Newtonian fluids; functional fluids; quantum and molecular dynamics; wave; acoustics; vibration; free surface flows; cavitation; fluid machinery; computational fluid dynamics (CFD); experimental fluid dynamics (EFD); Bio-fluid.