{"title":"Numerical investigation of a single intermediate-sized bubble in horizontal turbulent channel flow","authors":"Sangwon Kim, N. Oshima, Y. Murai, H. Park","doi":"10.1299/jfst.2020jfst0020","DOIUrl":null,"url":null,"abstract":"To address the increasing concern regarding global warming, the International Maritime Organization (IMO) regulated the requirements regarding greenhouse gas emissions from ships. To reduce these emissions, air lubrication systems are being used as this is an energy-saving technology developed to adhere to industry requirements (ABS, 2019). Air lubrication systems can be divided into two main categories based on the size of the bubbles. One category is the microbubble method developed by McCormick and Bhattacharyya (1973), and the other is the air film method, which has been found to be practically viable in the last two decades (e.g., Fukuda et al., 1999, 2000). Meanwhile, intermediate-sized bubbles have recently attracted significant research interest, as bubble deformation plays a key role in the process of drag reduction, as studied by Moriguchi and Kato (2002) and Kitagawa et al. (2005). The intermediate-sized bubbles negatively contribute to the drag reduction performance in the downstream region of the microbubble and air film methods. However, Murai et al. (2006) investigated the drag reduction mechanism for these bubbles (10–50 mm) and discovered that a calm region is generated behind the bubble. This feature is quite different from those of the microbubble and air film methods. This previous research has proven to be a turning point in studies related to intermediate-sized bubbles and is being considered as a new technique for improving drag reduction. An additional advantage is that supplying intermediatesized bubbles is much easier than generating a high flow rate of microbubbles or stabilizing an air film over a wide area. Murai et al. (2007) and Oishi and Murai (2014) rigorously investigated and described influential characteristics such as the velocity gradient and u'v' contours related to the drag reduction of a single intermediate-sized bubble. In numerical studies, Lu et al. (2005), Sugiyama et al. (2005), Kawamura (2005), and Spandan et al. (2017) also confirmed the positive *Department of Mechanical and Space Engineering, Hokkaido university Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan E-mail: swkim5834@eis.hokudai.ac.jp **Division of Energy and Environmental Systems, Hokkaido university Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan","PeriodicalId":44704,"journal":{"name":"Journal of Fluid Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/jfst.2020jfst0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 3
Abstract
To address the increasing concern regarding global warming, the International Maritime Organization (IMO) regulated the requirements regarding greenhouse gas emissions from ships. To reduce these emissions, air lubrication systems are being used as this is an energy-saving technology developed to adhere to industry requirements (ABS, 2019). Air lubrication systems can be divided into two main categories based on the size of the bubbles. One category is the microbubble method developed by McCormick and Bhattacharyya (1973), and the other is the air film method, which has been found to be practically viable in the last two decades (e.g., Fukuda et al., 1999, 2000). Meanwhile, intermediate-sized bubbles have recently attracted significant research interest, as bubble deformation plays a key role in the process of drag reduction, as studied by Moriguchi and Kato (2002) and Kitagawa et al. (2005). The intermediate-sized bubbles negatively contribute to the drag reduction performance in the downstream region of the microbubble and air film methods. However, Murai et al. (2006) investigated the drag reduction mechanism for these bubbles (10–50 mm) and discovered that a calm region is generated behind the bubble. This feature is quite different from those of the microbubble and air film methods. This previous research has proven to be a turning point in studies related to intermediate-sized bubbles and is being considered as a new technique for improving drag reduction. An additional advantage is that supplying intermediatesized bubbles is much easier than generating a high flow rate of microbubbles or stabilizing an air film over a wide area. Murai et al. (2007) and Oishi and Murai (2014) rigorously investigated and described influential characteristics such as the velocity gradient and u'v' contours related to the drag reduction of a single intermediate-sized bubble. In numerical studies, Lu et al. (2005), Sugiyama et al. (2005), Kawamura (2005), and Spandan et al. (2017) also confirmed the positive *Department of Mechanical and Space Engineering, Hokkaido university Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan E-mail: swkim5834@eis.hokudai.ac.jp **Division of Energy and Environmental Systems, Hokkaido university Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
期刊介绍:
Journal of Fluid Science and Technology (JFST) is an international journal published by the Fluids Engineering Division in the Japan Society of Mechanical Engineers (JSME). JSME had been publishing Bulletin of the JSME (1958-1986) and JSME International Journal (1987-2006) by the continuous volume numbers. Considering the recent circumstances of the academic journals in the field of mechanical engineering, JSME reorganized the journal editorial system. Namely, JSME discontinued former International Journals and projected new publications from the divisions belonging to JSME. The Fluids Engineering Division acted quickly among all divisions and launched the premiere issue of JFST in January 2006. JFST aims at contributing to the development of fluid engineering by publishing superior papers of the scientific and technological studies in this field. The editorial committee will make all efforts for promoting strictly fair and speedy review for submitted articles. All JFST papers will be available for free at the website of J-STAGE (http://www.i-product.biz/jsme/eng/), which is hosted by Japan Science and Technology Agency (JST). Thus papers can be accessed worldwide by lead scientists and engineers. In addition, authors can express their results variedly by high-quality color drawings and pictures. JFST invites the submission of original papers on wide variety of fields related to fluid mechanics and fluid engineering. The topics to be treated should be corresponding to the following keywords of the Fluids Engineering Division of the JSME. Basic keywords include: turbulent flow; multiphase flow; non-Newtonian fluids; functional fluids; quantum and molecular dynamics; wave; acoustics; vibration; free surface flows; cavitation; fluid machinery; computational fluid dynamics (CFD); experimental fluid dynamics (EFD); Bio-fluid.