Flow and heat transfer characteristics of blooming jets impinging upon wall using DNS

IF 0.7 Q4 MECHANICS
Kentaro Echigo, K. Tsujimoto, T. Shakouchi, T. Ando
{"title":"Flow and heat transfer characteristics of blooming jets impinging upon wall using DNS","authors":"Kentaro Echigo, K. Tsujimoto, T. Shakouchi, T. Ando","doi":"10.1299/jfst.2020jfst0010","DOIUrl":null,"url":null,"abstract":"A single impinging jet exhibits high heat transfer performance around an impingement point on a wall. However, the heat transfer performance deteriorates as it moves away from the impingement point. Consequently, multiple impinging jets are commonly introduced to overcome the shortcomings of a single jet: inhomogeneous heat distribution on the wall and a narrow heating area. However, inhomogeneous heat transfers still occur. Therefore, a new jet control is required to improve the uniformity of heat transfer. Meanwhile, blooming jets are produced by appropriate combinations of axial and helical excitations at the nozzle exit. Using appropriately selected excitations, a jet can split into two separate jets (bifurcating jet) or spread into a shower of toroidal vortex rings. Blooming jets exhibit good performances of mixing and diffusion, suggesting possible applications in flow control. However, studies regarding the heat transfer performance of blooming jets are non-existent. In this study, we conducted direct numerical simulations of blooming jets impinging upon a wall and investigated their flow characteristics and heat transfer performances. As control parameters, the impingement distance (the distance from the nozzle to the wall) and frequency ratio (the axial excitation frequency to the helical frequency) are varied. The vortex structures and velocity magnitude reveals flow modulations due to blooming control. With the time-averaged local Nusselt number, the heat transfer performance of the blooming jets is evaluated quantitatively. Compared with uncontrolled jets, the uniformity of heat transfer of blooming jets is better, suggesting their potential application for leveling the heat transfer of impinging jets.","PeriodicalId":44704,"journal":{"name":"Journal of Fluid Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/jfst.2020jfst0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

A single impinging jet exhibits high heat transfer performance around an impingement point on a wall. However, the heat transfer performance deteriorates as it moves away from the impingement point. Consequently, multiple impinging jets are commonly introduced to overcome the shortcomings of a single jet: inhomogeneous heat distribution on the wall and a narrow heating area. However, inhomogeneous heat transfers still occur. Therefore, a new jet control is required to improve the uniformity of heat transfer. Meanwhile, blooming jets are produced by appropriate combinations of axial and helical excitations at the nozzle exit. Using appropriately selected excitations, a jet can split into two separate jets (bifurcating jet) or spread into a shower of toroidal vortex rings. Blooming jets exhibit good performances of mixing and diffusion, suggesting possible applications in flow control. However, studies regarding the heat transfer performance of blooming jets are non-existent. In this study, we conducted direct numerical simulations of blooming jets impinging upon a wall and investigated their flow characteristics and heat transfer performances. As control parameters, the impingement distance (the distance from the nozzle to the wall) and frequency ratio (the axial excitation frequency to the helical frequency) are varied. The vortex structures and velocity magnitude reveals flow modulations due to blooming control. With the time-averaged local Nusselt number, the heat transfer performance of the blooming jets is evaluated quantitatively. Compared with uncontrolled jets, the uniformity of heat transfer of blooming jets is better, suggesting their potential application for leveling the heat transfer of impinging jets.
用DNS分析喷淋射流撞击壁面的流动传热特性
单个撞击射流在壁面撞击点附近表现出较高的传热性能。然而,当它远离撞击点时,传热性能会变差。因此,通常引入多个冲击射流来克服单射流的缺点:壁面热分布不均匀和受热区域狭窄。然而,不均匀的热传递仍然存在。因此,需要一种新的射流控制来提高传热的均匀性。同时,在喷嘴出口处适当组合轴向和螺旋激励可产生喷淋射流。使用适当选择的激励,射流可以分裂成两个单独的射流(分岔射流)或扩散成环形涡环的阵雨。喷淋射流具有良好的混合和扩散性能,在流动控制方面具有一定的应用前景。然而,关于喷淋射流传热性能的研究还没有。本文对喷花射流撞击壁面进行了直接数值模拟,研究了喷花射流的流动特性和传热性能。作为控制参数,改变冲击距离(喷嘴到壁面的距离)和频率比(轴向激励频率与螺旋频率)。旋涡结构和速度大小揭示了由于喷流控制而产生的流动调节。利用时间平均局部努塞尔数,定量评价了喷淋射流的传热性能。与非受控射流相比,喷淋射流的传热均匀性更好,表明其在平衡冲击射流传热方面具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
2
期刊介绍: Journal of Fluid Science and Technology (JFST) is an international journal published by the Fluids Engineering Division in the Japan Society of Mechanical Engineers (JSME). JSME had been publishing Bulletin of the JSME (1958-1986) and JSME International Journal (1987-2006) by the continuous volume numbers. Considering the recent circumstances of the academic journals in the field of mechanical engineering, JSME reorganized the journal editorial system. Namely, JSME discontinued former International Journals and projected new publications from the divisions belonging to JSME. The Fluids Engineering Division acted quickly among all divisions and launched the premiere issue of JFST in January 2006. JFST aims at contributing to the development of fluid engineering by publishing superior papers of the scientific and technological studies in this field. The editorial committee will make all efforts for promoting strictly fair and speedy review for submitted articles. All JFST papers will be available for free at the website of J-STAGE (http://www.i-product.biz/jsme/eng/), which is hosted by Japan Science and Technology Agency (JST). Thus papers can be accessed worldwide by lead scientists and engineers. In addition, authors can express their results variedly by high-quality color drawings and pictures. JFST invites the submission of original papers on wide variety of fields related to fluid mechanics and fluid engineering. The topics to be treated should be corresponding to the following keywords of the Fluids Engineering Division of the JSME. Basic keywords include: turbulent flow; multiphase flow; non-Newtonian fluids; functional fluids; quantum and molecular dynamics; wave; acoustics; vibration; free surface flows; cavitation; fluid machinery; computational fluid dynamics (CFD); experimental fluid dynamics (EFD); Bio-fluid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信