{"title":"Bypass transition in a boundary layer subject to sheet-type freestream disturbance","authors":"Kota Tomiuka, Y. Nishio, S. Izawa, Y. Fukunishi","doi":"10.1299/jfst.2020jfst0001","DOIUrl":null,"url":null,"abstract":"In this study, the receptivity of a flat-plate boundary layer was studied by introducing a thin sheet-type disturbance. An airfoil-shaped device was used to generate a thin disturbance without velocity deficit in which a steady jet was ejected from its trailing edge to the downstream. Despite the absence of strong disturbances in the freestream outside the boundary layer, streaky structures similar to an ordinary bypass transition were generated. They meandered slowly in the spanwise direction where their downstream parts were oscillating in a delayed fashion. Turbulent spots were formed in the further downstream region. Consequently, the energy growth of the low frequency band in the velocity fluctuation spectrum was found to originate from this meandering motion of the streaks, whereas the growth of the middle- and high-frequency bands was attributed to the appearances of the turbulent spots.","PeriodicalId":44704,"journal":{"name":"Journal of Fluid Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1299/jfst.2020jfst0001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/jfst.2020jfst0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the receptivity of a flat-plate boundary layer was studied by introducing a thin sheet-type disturbance. An airfoil-shaped device was used to generate a thin disturbance without velocity deficit in which a steady jet was ejected from its trailing edge to the downstream. Despite the absence of strong disturbances in the freestream outside the boundary layer, streaky structures similar to an ordinary bypass transition were generated. They meandered slowly in the spanwise direction where their downstream parts were oscillating in a delayed fashion. Turbulent spots were formed in the further downstream region. Consequently, the energy growth of the low frequency band in the velocity fluctuation spectrum was found to originate from this meandering motion of the streaks, whereas the growth of the middle- and high-frequency bands was attributed to the appearances of the turbulent spots.
期刊介绍:
Journal of Fluid Science and Technology (JFST) is an international journal published by the Fluids Engineering Division in the Japan Society of Mechanical Engineers (JSME). JSME had been publishing Bulletin of the JSME (1958-1986) and JSME International Journal (1987-2006) by the continuous volume numbers. Considering the recent circumstances of the academic journals in the field of mechanical engineering, JSME reorganized the journal editorial system. Namely, JSME discontinued former International Journals and projected new publications from the divisions belonging to JSME. The Fluids Engineering Division acted quickly among all divisions and launched the premiere issue of JFST in January 2006. JFST aims at contributing to the development of fluid engineering by publishing superior papers of the scientific and technological studies in this field. The editorial committee will make all efforts for promoting strictly fair and speedy review for submitted articles. All JFST papers will be available for free at the website of J-STAGE (http://www.i-product.biz/jsme/eng/), which is hosted by Japan Science and Technology Agency (JST). Thus papers can be accessed worldwide by lead scientists and engineers. In addition, authors can express their results variedly by high-quality color drawings and pictures. JFST invites the submission of original papers on wide variety of fields related to fluid mechanics and fluid engineering. The topics to be treated should be corresponding to the following keywords of the Fluids Engineering Division of the JSME. Basic keywords include: turbulent flow; multiphase flow; non-Newtonian fluids; functional fluids; quantum and molecular dynamics; wave; acoustics; vibration; free surface flows; cavitation; fluid machinery; computational fluid dynamics (CFD); experimental fluid dynamics (EFD); Bio-fluid.