Effects of rigidity on tension within the cell membranes of erythrocytes swollen by osmotic shock

Q4 Engineering
K. Bando, R. Otomo
{"title":"Effects of rigidity on tension within the cell membranes of erythrocytes swollen by osmotic shock","authors":"K. Bando, R. Otomo","doi":"10.1299/jbse.21-00205","DOIUrl":null,"url":null,"abstract":"Erythrocytes swell owing to the osmotic shock caused by hypotonic liquids, and when the membrane tension exceeds a certain limit, hemolysis occurs. The base tension in the membrane of a spherically shaped erythrocyte is usually ignored in the mechanical evaluation of hemolysis. However, the base tension cannot be ignored when the rigidity of the erythrocyte membrane increases owing to lesions, oxidative stress, and other phenomena. Therefore, it is necessary to re-evaluate the tension level at which hemolysis occurs by considering the increased base tension, which is caused by a combined increase in the bending and shear rigidity of the membrane. To achieve this, we calculated the effect of increases in the combined rigidity on the increases in the internal pressure and membrane tension of the erythrocyte. In this study, assuming the surface area to be constant, the swelling process of erythrocytes was evaluated under the condition that hemolysis does not occur. Evaluation was performed by minimizing strain energy, which is the sum of bending strain and shear strain. When the erythrocyte was spherical, the membrane base tension increased linearly with combined rigidity. Even when the bending rigidity was increased to 100 times that of normal erythrocytes, the effect of the base tension on the hemolysis tension level (15 mN/m) was negligible. However, when shear rigidity was increased to 50–100 times that of normal erythrocytes, it became necessary to decrease the hemolysis tension level by 10% and 20%, respectively, because the base tensions were approximately 1.5 and 3.0 mN/m, respectively.","PeriodicalId":39034,"journal":{"name":"Journal of Biomechanical Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/jbse.21-00205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Erythrocytes swell owing to the osmotic shock caused by hypotonic liquids, and when the membrane tension exceeds a certain limit, hemolysis occurs. The base tension in the membrane of a spherically shaped erythrocyte is usually ignored in the mechanical evaluation of hemolysis. However, the base tension cannot be ignored when the rigidity of the erythrocyte membrane increases owing to lesions, oxidative stress, and other phenomena. Therefore, it is necessary to re-evaluate the tension level at which hemolysis occurs by considering the increased base tension, which is caused by a combined increase in the bending and shear rigidity of the membrane. To achieve this, we calculated the effect of increases in the combined rigidity on the increases in the internal pressure and membrane tension of the erythrocyte. In this study, assuming the surface area to be constant, the swelling process of erythrocytes was evaluated under the condition that hemolysis does not occur. Evaluation was performed by minimizing strain energy, which is the sum of bending strain and shear strain. When the erythrocyte was spherical, the membrane base tension increased linearly with combined rigidity. Even when the bending rigidity was increased to 100 times that of normal erythrocytes, the effect of the base tension on the hemolysis tension level (15 mN/m) was negligible. However, when shear rigidity was increased to 50–100 times that of normal erythrocytes, it became necessary to decrease the hemolysis tension level by 10% and 20%, respectively, because the base tensions were approximately 1.5 and 3.0 mN/m, respectively.
刚性对渗透性休克肿胀红细胞细胞膜张力的影响
红细胞因低渗液体引起渗透休克而肿胀,当膜张力超过一定限度时,发生溶血。在溶血的力学评价中,球形红细胞膜的基底张力通常被忽略。然而,当红细胞膜因病变、氧化应激等现象而刚性增加时,基底张力不可忽视。因此,有必要通过考虑基底张力的增加来重新评估溶血发生时的张力水平,基底张力的增加是由膜的弯曲和剪切刚度的联合增加引起的。为了实现这一点,我们计算了组合刚度的增加对红细胞内压和膜张力增加的影响。在本研究中,假设表面积一定,在不发生溶血的情况下,评估红细胞的肿胀过程。通过最小化应变能(弯曲应变和剪切应变之和)进行评估。红细胞呈球形时,膜基张力随组合刚度线性增加。即使将红细胞的弯曲刚度提高到正常红细胞的100倍,基底张力对溶血张力水平(15 mN/m)的影响也可以忽略不计。然而,当剪切刚度增加到正常红细胞的50-100倍时,由于碱基张力分别约为1.5和3.0 mN/m,因此有必要分别降低溶血张力水平10%和20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomechanical Science and Engineering
Journal of Biomechanical Science and Engineering Engineering-Biomedical Engineering
CiteScore
0.90
自引率
0.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信