Debbie L. King, Adegboyega Babasola, J. Rozario, Joshua M. Pearce
{"title":"Mobile Open-Source Solar-Powered 3-D Printers for Distributed Manufacturing in Off-Grid Communities","authors":"Debbie L. King, Adegboyega Babasola, J. Rozario, Joshua M. Pearce","doi":"10.12924/CIS2014.02010018","DOIUrl":null,"url":null,"abstract":"Manufacturing in areas of the developing world that lack electricity severely restricts the technical sophistication of what is produced. More than a billion people with no access to electricity still have access to some imported higher-technologies; however, these often lack customization and often appropriateness for their community. Open source appropriate techÂnology (OSAT) can overÂcome this challenge, but one of the key impediments to the more rapid development and distriÂbution of OSAT is the lack of means of production beyond a specific technical complexity. This study designs and demonstrates the technical viability of two open-source mobile digital manufacturing facilities powered with solar photovoltaics, and capable of printing customizable OSAT in any comÂmunity with access to sunlight. The first, designed for comÂmunity use, such as in schools or makerÂspaces, is semi-mobile and capable of nearly continuous 3-D printing using RepRap technology, while also powering multiple computers. The second design, which can be completely packed into a standard suitcase, allows for specialist travel from community to community to provide the ability to custom manufacture OSAT as needed, anywhere. These designs not only bring the possibility of complex manufacturing and replacement part fabrication to isolated rural communities lacking access to the electric grid, but they also offer the opportunity to leap-frog the entire conventional manufacturing supply chain, while radically reducing both the cost and the environmental impact of products for developing communities.","PeriodicalId":9944,"journal":{"name":"Challenges in Sustainability","volume":"2 1","pages":"18-27"},"PeriodicalIF":0.8000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Challenges in Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12924/CIS2014.02010018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 57
Abstract
Manufacturing in areas of the developing world that lack electricity severely restricts the technical sophistication of what is produced. More than a billion people with no access to electricity still have access to some imported higher-technologies; however, these often lack customization and often appropriateness for their community. Open source appropriate techÂnology (OSAT) can overÂcome this challenge, but one of the key impediments to the more rapid development and distriÂbution of OSAT is the lack of means of production beyond a specific technical complexity. This study designs and demonstrates the technical viability of two open-source mobile digital manufacturing facilities powered with solar photovoltaics, and capable of printing customizable OSAT in any comÂmunity with access to sunlight. The first, designed for comÂmunity use, such as in schools or makerÂspaces, is semi-mobile and capable of nearly continuous 3-D printing using RepRap technology, while also powering multiple computers. The second design, which can be completely packed into a standard suitcase, allows for specialist travel from community to community to provide the ability to custom manufacture OSAT as needed, anywhere. These designs not only bring the possibility of complex manufacturing and replacement part fabrication to isolated rural communities lacking access to the electric grid, but they also offer the opportunity to leap-frog the entire conventional manufacturing supply chain, while radically reducing both the cost and the environmental impact of products for developing communities.