Improving Biopharmaceutical Manufacturing Yield Using Neural Network Classification

Will Fahey, Paula Carroll
{"title":"Improving Biopharmaceutical Manufacturing Yield Using Neural Network Classification","authors":"Will Fahey, Paula Carroll","doi":"10.12665/J144.CARROLL","DOIUrl":null,"url":null,"abstract":": Traditionally, the Six Sigma framework has underpinned quality improvement and assurance in biopharmaceutical manufacturing process management. This paper proposes a Neural Network (NN) approach to vaccine yield classification. The NN is compared to an existing Multiple Linear regression approach. This paper shows how a Data Mining framework can be used to extract further value and insight from the data gathered during the manufacturing process as part of the Six Sigma process. Insights to yield classification can be used in the quality improvement process.","PeriodicalId":88836,"journal":{"name":"Bioprocessing","volume":"14 1","pages":"39-50"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocessing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12665/J144.CARROLL","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

: Traditionally, the Six Sigma framework has underpinned quality improvement and assurance in biopharmaceutical manufacturing process management. This paper proposes a Neural Network (NN) approach to vaccine yield classification. The NN is compared to an existing Multiple Linear regression approach. This paper shows how a Data Mining framework can be used to extract further value and insight from the data gathered during the manufacturing process as part of the Six Sigma process. Insights to yield classification can be used in the quality improvement process.
利用神经网络分类提高生物制药生产成品率
传统上,六西格玛框架是生物制药生产过程管理中质量改进和保证的基础。提出了一种基于神经网络的疫苗产量分类方法。将神经网络与现有的多元线性回归方法进行比较。本文展示了如何使用数据挖掘框架从制造过程中收集的数据中提取进一步的价值和洞察力,作为六西格玛过程的一部分。成品率分类的见解可用于质量改进过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信