Mass Flow Rate Control in a Cylindrical Capillary by an AC Electric Field at High Zeta Potential

Prakash Goswami, S. Chakraborty
{"title":"Mass Flow Rate Control in a Cylindrical Capillary by an AC Electric Field at High Zeta Potential","authors":"Prakash Goswami, S. Chakraborty","doi":"10.1260/1759-3093.5.1.23","DOIUrl":null,"url":null,"abstract":"In the present study we obtain the mass flow rate characteristics in a cylindrical capillary due to a time-periodic electric field at high zeta potential, extending the conventional thin electrical double layer limit. The capillary cross section is divided into two regimes, the high potential regime (near surface region), and the low potential regime (capillary central line region). To obtain the potential distribution inside the capillary, the nonlinear part of the Poisson-Boltzmann equation is approximated by a linear function for the low potential regime and by an exponential function for high potential regime. Using the approximated potential distributions, the governing electro-hydrodynamic equation is then solved semi-analytically, where the imposed electric field and the velocity field is assumed to have the form which consist of a steady state term and a time-periodic term. A theoretical investigation on the mass flow rate, the phase difference is carried out on the basis of pulsation frequency, e...","PeriodicalId":89942,"journal":{"name":"International journal of micro-nano scale transport","volume":"5 1","pages":"23-38"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of micro-nano scale transport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1260/1759-3093.5.1.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the present study we obtain the mass flow rate characteristics in a cylindrical capillary due to a time-periodic electric field at high zeta potential, extending the conventional thin electrical double layer limit. The capillary cross section is divided into two regimes, the high potential regime (near surface region), and the low potential regime (capillary central line region). To obtain the potential distribution inside the capillary, the nonlinear part of the Poisson-Boltzmann equation is approximated by a linear function for the low potential regime and by an exponential function for high potential regime. Using the approximated potential distributions, the governing electro-hydrodynamic equation is then solved semi-analytically, where the imposed electric field and the velocity field is assumed to have the form which consist of a steady state term and a time-periodic term. A theoretical investigation on the mass flow rate, the phase difference is carried out on the basis of pulsation frequency, e...
高Zeta电位下交流电场对圆柱形毛细管质量流量的控制
在本研究中,我们得到了由于时间周期电场在高zeta电位下在圆柱形毛细管中的质量流量特性,扩展了传统的薄双电层极限。毛细管截面分为两个区,高电位区(近表面区)和低电位区(毛细管中心线区)。为了得到毛细管内的势分布,泊松-玻尔兹曼方程的非线性部分在低势区近似为线性函数,在高势区近似为指数函数。利用近似的势分布,对控制电流体动力学方程进行了半解析求解,并将施加的电场和速度场设为由稳态项和时间周期项组成的形式。对质量流量、相位差进行了理论研究,并以脉动频率、流量、流量、流量为基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信