Numerical Simulations of Non-equilibrium Energy Transport in Nanostructures using Boltzmann Transport Equation

A. Pattamatta
{"title":"Numerical Simulations of Non-equilibrium Energy Transport in Nanostructures using Boltzmann Transport Equation","authors":"A. Pattamatta","doi":"10.1260/1759-3093.1.3.189","DOIUrl":null,"url":null,"abstract":"Heat transfer in nanostructures differ significantly from that in the bulk materials since the characteristic length scales associated with heat carriers, i.e., the mean free path and the wavelength, are comparable to the characteristic length of the nanostructures. Nanostructure materials hold the promise of novel phenomena, properties, and functions in the areas of thermoelectric energy conversion and micro/nano electronic devices. One of the major challenges in micro/nano electronic devices is to study the ‘hot spot’ generation by accurately modeling the carrier-optical phonon-acoustic phonon interactions. Thermoelectric properties are among the properties that may drastically change at nanoscale. During the last decade, advances have been made in increasing the efficiency of thermoelectric energy conversion using nanostructures. In this paper, the non-equilibrium interaction between carriers and phonons in semiconductor thin films is modeled using the Boltzmann transport model (BTM) for studying the t...","PeriodicalId":89942,"journal":{"name":"International journal of micro-nano scale transport","volume":"1 1","pages":"189-218"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of micro-nano scale transport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1260/1759-3093.1.3.189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heat transfer in nanostructures differ significantly from that in the bulk materials since the characteristic length scales associated with heat carriers, i.e., the mean free path and the wavelength, are comparable to the characteristic length of the nanostructures. Nanostructure materials hold the promise of novel phenomena, properties, and functions in the areas of thermoelectric energy conversion and micro/nano electronic devices. One of the major challenges in micro/nano electronic devices is to study the ‘hot spot’ generation by accurately modeling the carrier-optical phonon-acoustic phonon interactions. Thermoelectric properties are among the properties that may drastically change at nanoscale. During the last decade, advances have been made in increasing the efficiency of thermoelectric energy conversion using nanostructures. In this paper, the non-equilibrium interaction between carriers and phonons in semiconductor thin films is modeled using the Boltzmann transport model (BTM) for studying the t...
基于玻尔兹曼输运方程的纳米结构非平衡能量输运数值模拟
由于与热载体相关的特征长度尺度(即平均自由程和波长)与纳米结构的特征长度相当,因此纳米结构中的传热与块体材料中的传热有很大不同。纳米结构材料在热电能量转换和微纳米电子器件领域具有新的现象、特性和功能。通过精确模拟载流子-光声子-声子相互作用来研究“热点”的产生是微纳电子器件面临的主要挑战之一。热电性质是在纳米尺度上可能发生巨大变化的性质之一。在过去的十年中,利用纳米结构在提高热电能量转换效率方面取得了进展。本文利用玻尔兹曼输运模型(BTM)研究了半导体薄膜中载流子与声子的非平衡相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信