Regression-in-Ratio Estimators for Population Mean by Using Robust Regression in Two Phase Sampling

IF 0.9 Q3 STATISTICS & PROBABILITY
Aamir Raza, Muhammad Noor-ul-Amin
{"title":"Regression-in-Ratio Estimators for Population Mean by Using Robust Regression in Two Phase Sampling","authors":"Aamir Raza, Muhammad Noor-ul-Amin","doi":"10.13052/jrss0974-8024.1427","DOIUrl":null,"url":null,"abstract":"The estimation of population mean is not meaningful using ordinary least square method when data contains some outliers. In the current study, we proposed efficient estimators of population mean using robust regression in two phase sampling. An extensive simulation study is conduct to examine the efficiency of proposed estimators in terms of mean square error (MSE). Real life example and extensive simulation study are cited to demonstrate the performance of the proposed estimators. Theoretical example and simulation studies showed that the suggested estimators are more efficient than the considered estimators in the presence of outliers.","PeriodicalId":42526,"journal":{"name":"Journal of Reliability and Statistical Studies","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reliability and Statistical Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jrss0974-8024.1427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The estimation of population mean is not meaningful using ordinary least square method when data contains some outliers. In the current study, we proposed efficient estimators of population mean using robust regression in two phase sampling. An extensive simulation study is conduct to examine the efficiency of proposed estimators in terms of mean square error (MSE). Real life example and extensive simulation study are cited to demonstrate the performance of the proposed estimators. Theoretical example and simulation studies showed that the suggested estimators are more efficient than the considered estimators in the presence of outliers.
两阶段抽样稳健回归总体均值的比值回归估计
当数据中存在异常值时,用普通最小二乘法估计总体均值是没有意义的。在目前的研究中,我们提出了在两阶段抽样中使用稳健回归的总体均值的有效估计。进行了广泛的仿真研究,以检验所提出的估计器在均方误差(MSE)方面的效率。通过实例和广泛的仿真研究证明了所提估计器的性能。理论算例和仿真研究表明,在存在异常值的情况下,建议的估计量比考虑的估计量更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
12.50%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信