{"title":"Confidence as Likelihood","authors":"Y. Pawitan, Youngjo Lee","doi":"10.1214/20-sts811","DOIUrl":null,"url":null,"abstract":"Confidence and likelihood are fundamental statistical concepts with distinct technical interpretation and usage. Confidence is a meaningful concept of uncertainty within the context of confidence-interval procedure, while likelihood has been used predominantly as a tool for statistical modelling and inference given observed data. Here we show that confidence is in fact an extended likelihood, thus giving a much closer correspondence between the two concepts. This result gives the confidence concept an external meaning outside the confidence-interval context, and vice versa, it gives the confidence interpretation to the likelihood. In addition to the obvious interpretation purposes, this connection suggests two-way transfers of technical information. For example, the extended likelihood theory gives a clear way to update or combine confidence information. On the other hand, the confidence connection gives the extended likelihood direct access to the frequentist probability, an objective certification not directly available to the classical likelihood. This implies that intervals derived from the extended likelihood have the same logical status as confidence intervals, thus simplifying the terminology in the inference of random parameters.","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-sts811","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 9
Abstract
Confidence and likelihood are fundamental statistical concepts with distinct technical interpretation and usage. Confidence is a meaningful concept of uncertainty within the context of confidence-interval procedure, while likelihood has been used predominantly as a tool for statistical modelling and inference given observed data. Here we show that confidence is in fact an extended likelihood, thus giving a much closer correspondence between the two concepts. This result gives the confidence concept an external meaning outside the confidence-interval context, and vice versa, it gives the confidence interpretation to the likelihood. In addition to the obvious interpretation purposes, this connection suggests two-way transfers of technical information. For example, the extended likelihood theory gives a clear way to update or combine confidence information. On the other hand, the confidence connection gives the extended likelihood direct access to the frequentist probability, an objective certification not directly available to the classical likelihood. This implies that intervals derived from the extended likelihood have the same logical status as confidence intervals, thus simplifying the terminology in the inference of random parameters.
期刊介绍:
The central purpose of Statistical Science is to convey the richness, breadth and unity of the field by presenting the full range of contemporary statistical thought at a moderate technical level, accessible to the wide community of practitioners, researchers and students of statistics and probability.