Discussion of “On Nearly Assumption-Free Tests of Nominal Confidence Interval Coverage for Causal Parameters Estimated by Machine Learning”

IF 3.9 1区 数学 Q1 STATISTICS & PROBABILITY
Edward H. Kennedy, Sivaraman Balakrishnan, L. Wasserman
{"title":"Discussion of “On Nearly Assumption-Free Tests of Nominal Confidence Interval Coverage for Causal Parameters Estimated by Machine Learning”","authors":"Edward H. Kennedy, Sivaraman Balakrishnan, L. Wasserman","doi":"10.1214/20-sts796","DOIUrl":null,"url":null,"abstract":"We congratulate the authors on their exciting paper, which introduces a novel idea for assessing the estimation bias in causal estimates. Doubly robust estimators are now part of the standard set of tools in causal inference, but a typical analysis stops with an estimate and a confidence interval. The authors give an approach for a unique type of model-checking that allows the user to check whether the bias is sufficiently small with respect to the standard error, which is generally required for confidence intervals to be reliable.","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2020-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-sts796","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

We congratulate the authors on their exciting paper, which introduces a novel idea for assessing the estimation bias in causal estimates. Doubly robust estimators are now part of the standard set of tools in causal inference, but a typical analysis stops with an estimate and a confidence interval. The authors give an approach for a unique type of model-checking that allows the user to check whether the bias is sufficiently small with respect to the standard error, which is generally required for confidence intervals to be reliable.
关于“机器学习估计的因果参数的名义置信区间覆盖率的近似无假设检验”的讨论
我们祝贺作者这篇令人兴奋的论文,它引入了一种评估因果估计中估计偏差的新思路。双鲁棒估计器现在是因果推理的标准工具集的一部分,但典型的分析停止于估计和置信区间。作者给出了一种独特类型的模型检查方法,允许用户检查偏差相对于标准误差是否足够小,这通常是可信区间可靠所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Science
Statistical Science 数学-统计学与概率论
CiteScore
6.50
自引率
1.80%
发文量
40
审稿时长
>12 weeks
期刊介绍: The central purpose of Statistical Science is to convey the richness, breadth and unity of the field by presenting the full range of contemporary statistical thought at a moderate technical level, accessible to the wide community of practitioners, researchers and students of statistics and probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信