TASEP hydrodynamics using microscopic characteristics

IF 1.3 Q2 STATISTICS & PROBABILITY
P. Ferrari
{"title":"TASEP hydrodynamics using microscopic characteristics","authors":"P. Ferrari","doi":"10.1214/17-PS284","DOIUrl":null,"url":null,"abstract":"The convergence of the totally asymmetric simple exclusion process to the solution of the Burgers equation is a classical result. In his seminal 1981 paper, Herman Rost proved the convergence of the density fields and local equilibrium when the limiting solution of the equation is a rarefaction fan. An important tool of his proof is the subadditive ergodic theorem. We prove his results by showing how second class particles transport the rarefaction-fan solution, as characteristics do for the Burgers equation, avoiding subadditivity. Along the way we show laws of large numbers for tagged particles, fluxes and second class particles, and simplify existing proofs in the shock cases. The presentation is self contained.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2016-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/17-PS284","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/17-PS284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 15

Abstract

The convergence of the totally asymmetric simple exclusion process to the solution of the Burgers equation is a classical result. In his seminal 1981 paper, Herman Rost proved the convergence of the density fields and local equilibrium when the limiting solution of the equation is a rarefaction fan. An important tool of his proof is the subadditive ergodic theorem. We prove his results by showing how second class particles transport the rarefaction-fan solution, as characteristics do for the Burgers equation, avoiding subadditivity. Along the way we show laws of large numbers for tagged particles, fluxes and second class particles, and simplify existing proofs in the shock cases. The presentation is self contained.
TASEP流体力学的微观特征
完全不对称简单不相容过程对Burgers方程解的收敛性是一个经典结果。在他1981年的开创性论文中,Herman Rost证明了当方程的极限解是一个稀疏扇形时密度场和局部平衡的收敛性。他证明的一个重要工具是次加性遍历定理。我们通过展示第二类粒子如何传输稀疏扇解来证明他的结果,就像伯格方程的特征一样,避免了次可加性。在此过程中,我们展示了标记粒子、通量和第二类粒子的大数定律,并简化了激波情况下的现有证明。演示是独立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信