{"title":"An $L^{p}$ theory of sparse graph convergence II: LD convergence, quotients and right convergence","authors":"C. Borgs, J. Chayes, Henry Cohn, Yufei Zhao","doi":"10.1214/17-AOP1187","DOIUrl":null,"url":null,"abstract":"We extend the LpLp theory of sparse graph limits, which was introduced in a companion paper, by analyzing different notions of convergence. Under suitable restrictions on node weights, we prove the equivalence of metric convergence, quotient convergence, microcanonical ground state energy convergence, microcanonical free energy convergence and large deviation convergence. Our theorems extend the broad applicability of dense graph convergence to all sparse graphs with unbounded average degree, while the proofs require new techniques based on uniform upper regularity. Examples to which our theory applies include stochastic block models, power law graphs and sparse versions of WW-random graphs.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2014-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/17-AOP1187","citationCount":"84","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/17-AOP1187","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 84
Abstract
We extend the LpLp theory of sparse graph limits, which was introduced in a companion paper, by analyzing different notions of convergence. Under suitable restrictions on node weights, we prove the equivalence of metric convergence, quotient convergence, microcanonical ground state energy convergence, microcanonical free energy convergence and large deviation convergence. Our theorems extend the broad applicability of dense graph convergence to all sparse graphs with unbounded average degree, while the proofs require new techniques based on uniform upper regularity. Examples to which our theory applies include stochastic block models, power law graphs and sparse versions of WW-random graphs.
期刊介绍:
The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.