Coagulation and diffusion: A probabilistic perspective on the Smoluchowski PDE

IF 1.3 Q2 STATISTICS & PROBABILITY
A. Hammond
{"title":"Coagulation and diffusion: A probabilistic perspective on the Smoluchowski PDE","authors":"A. Hammond","doi":"10.1214/15-PS263","DOIUrl":null,"url":null,"abstract":"The Smoluchowski coagulation-diffusion PDE is a system of partial differential equations modelling the evolution in time of mass-bearing Brownian particles which are subject to short-range pairwise coagulation. This survey presents a fairly detailed exposition of the kinetic limit derivation of the Smoluchowski PDE from a microscopic model of many coagulating Brownian particles that was undertaken in [11]. It presents heuristic explanations of the form of the main theorem before discussing the proof, and presents key estimates in that proof using a novel probabilistic technique. The survey’s principal aim is an exposition of this kinetic limit derivation, but it also contains an overview of several topics which either motivate or are motivated by this derivation.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":"14 1","pages":"205-288"},"PeriodicalIF":1.3000,"publicationDate":"2014-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/15-PS263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 7

Abstract

The Smoluchowski coagulation-diffusion PDE is a system of partial differential equations modelling the evolution in time of mass-bearing Brownian particles which are subject to short-range pairwise coagulation. This survey presents a fairly detailed exposition of the kinetic limit derivation of the Smoluchowski PDE from a microscopic model of many coagulating Brownian particles that was undertaken in [11]. It presents heuristic explanations of the form of the main theorem before discussing the proof, and presents key estimates in that proof using a novel probabilistic technique. The survey’s principal aim is an exposition of this kinetic limit derivation, but it also contains an overview of several topics which either motivate or are motivated by this derivation.
凝聚与扩散:斯摩鲁考夫斯基PDE的概率视角
Smoluchowski混凝扩散偏微分方程(PDE)是一个模拟含质量布朗粒子在时间上的演化的偏微分方程组。这一调查提出了一个相当详细的阐述斯摩鲁乔夫斯基偏微分方程的动力学极限推导从许多凝固布朗粒子的微观模型,是在2010年进行的。在讨论证明之前,它给出了主要定理形式的启发式解释,并使用一种新的概率技术给出了该证明中的关键估计。调查的主要目的是对这个动力学极限推导的阐述,但它也包含了几个主题的概述,这些主题要么是激发的,要么是由这个推导激发的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信