High temperature limits for $(1+1)$-dimensional directed polymer with heavy-tailed disorder

IF 2.1 1区 数学 Q1 STATISTICS & PROBABILITY
P. Dey, Nikos Zygouras
{"title":"High temperature limits for $(1+1)$-dimensional directed polymer with heavy-tailed disorder","authors":"P. Dey, Nikos Zygouras","doi":"10.1214/15-AOP1067","DOIUrl":null,"url":null,"abstract":"The directed polymer model at intermediate disorder regime was introduced by Alberts–Khanin–Quastel [Ann. Probab. 42 (2014) 1212–1256]. It was proved that at inverse temperature βn−γβn−γ with γ=1/4γ=1/4 the partition function, centered appropriately, converges in distribution and the limit is given in terms of the solution of the stochastic heat equation. This result was obtained under the assumption that the disorder variables posses exponential moments, but its universality was also conjectured under the assumption of six moments. We show that this conjecture is valid and we further extend it by exhibiting classes of different universal limiting behaviors in the case of less than six moments. We also explain the behavior of the scaling exponent for the log-partition function under different moment assumptions and values of γγ.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2015-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/15-AOP1067","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 21

Abstract

The directed polymer model at intermediate disorder regime was introduced by Alberts–Khanin–Quastel [Ann. Probab. 42 (2014) 1212–1256]. It was proved that at inverse temperature βn−γβn−γ with γ=1/4γ=1/4 the partition function, centered appropriately, converges in distribution and the limit is given in terms of the solution of the stochastic heat equation. This result was obtained under the assumption that the disorder variables posses exponential moments, but its universality was also conjectured under the assumption of six moments. We show that this conjecture is valid and we further extend it by exhibiting classes of different universal limiting behaviors in the case of less than six moments. We also explain the behavior of the scaling exponent for the log-partition function under different moment assumptions and values of γγ.
重尾无序$(1+1)$维定向聚合物的高温极限
在中间无序状态下定向聚合物模型是由Alberts-Khanin-Quastel [Ann]提出的。可能42(2014)1212-1256]。证明了在逆温度βn−γβn−γ γ=1/4γ=1/4时配分函数在分布上收敛,并用随机热方程的解给出了配分函数的极限。这个结果是在无序变量具有指数矩的假设下得到的,但在六个矩的假设下也推测了它的普适性。我们证明了这个猜想是有效的,并通过展示在小于6个矩的情况下的不同的全称极限行为的类别进一步扩展了它。我们还解释了对数配分函数在不同矩假设和γγ值下的标度指数的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Probability
Annals of Probability 数学-统计学与概率论
CiteScore
4.60
自引率
8.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信