A Gaussian upper bound for martingale small-ball probabilities

IF 2.1 1区 数学 Q1 STATISTICS & PROBABILITY
James R. Lee, Y. Peres, Charles K. Smart
{"title":"A Gaussian upper bound for martingale small-ball probabilities","authors":"James R. Lee, Y. Peres, Charles K. Smart","doi":"10.1214/15-AOP1073","DOIUrl":null,"url":null,"abstract":"Consider a discrete-time martingale {Xt}{Xt} taking values in a Hilbert space HH. We show that if for some L≥1L≥1, the bounds E[∥Xt+1−Xt∥2H|Xt]=1E[‖Xt+1−Xt‖H2|Xt]=1 and ∥Xt+1−Xt∥H≤L‖Xt+1−Xt‖H≤L are satisfied for all times t≥0t≥0, then there is a constant c=c(L)c=c(L) such that for 1≤R≤t√1≤R≤t, \n \nP(∥Xt−X0∥H≤R)≤cRt√. \nP(‖Xt−X0‖H≤R)≤cRt. \nFollowing Lee and Peres [Ann. Probab. 41 (2013) 3392–3419], this estimate has applications to small-ball estimates for random walks on vertex-transitive graphs: We show that for every infinite, connected, vertex-transitive graph GG with bounded degree, there is a constant CG>0CG>0 such that if {Zt}{Zt} is the simple random walk on GG, then for every e>0e>0 and t≥1/e2t≥1/e2, \n \nP(distG(Zt,Z0)≤et√)≤CGe, \nP(distG(Zt,Z0)≤et)≤CGe, \nwhere distGdistG denotes the graph distance in GG.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2014-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/15-AOP1073","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/15-AOP1073","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 12

Abstract

Consider a discrete-time martingale {Xt}{Xt} taking values in a Hilbert space HH. We show that if for some L≥1L≥1, the bounds E[∥Xt+1−Xt∥2H|Xt]=1E[‖Xt+1−Xt‖H2|Xt]=1 and ∥Xt+1−Xt∥H≤L‖Xt+1−Xt‖H≤L are satisfied for all times t≥0t≥0, then there is a constant c=c(L)c=c(L) such that for 1≤R≤t√1≤R≤t, P(∥Xt−X0∥H≤R)≤cRt√. P(‖Xt−X0‖H≤R)≤cRt. Following Lee and Peres [Ann. Probab. 41 (2013) 3392–3419], this estimate has applications to small-ball estimates for random walks on vertex-transitive graphs: We show that for every infinite, connected, vertex-transitive graph GG with bounded degree, there is a constant CG>0CG>0 such that if {Zt}{Zt} is the simple random walk on GG, then for every e>0e>0 and t≥1/e2t≥1/e2, P(distG(Zt,Z0)≤et√)≤CGe, P(distG(Zt,Z0)≤et)≤CGe, where distGdistG denotes the graph distance in GG.
鞅小球概率的高斯上界
考虑一个离散时间鞅{Xt}{Xt}取Hilbert空间HH中的值。我们证明,如果对于某些L≥1L≥1,边界E[∥Xt+1−Xt∥2H|Xt]=1E[∥Xt+1−Xt∥H2|Xt]=1和∥Xt+1−Xt∥H≤L对于所有t≥0t≥0时刻满足,则存在常数c=c(L)c=c(L)使得对于1≤R≤t√1≤R≤t, P(∥Xt−X0∥H≤R)≤cRt√。P(为Xt−X0为H R)≤≤cRt。跟随李和佩雷斯[安。(Probab. 41(2013) 3392-3419)),该估计可应用于点传递图随机游走的小球估计:我们证明,对于每一个有界度的无限连通点传递图GG,存在一个常数CG >cg >0,使得如果{Zt}{Zt}是GG上的简单随机游走,那么对于每一个e >e b> 0且t≥1/e2t≥1/e2, P(distG(Zt,Z0)≤et√)≤CGe, P(distG(Zt,Z0)≤et√)≤CGe,其中distGdistG表示GG中的图距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Probability
Annals of Probability 数学-统计学与概率论
CiteScore
4.60
自引率
8.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信