A quantitative Burton-Keane estimate under strong FKG condition

IF 2.1 1区 数学 Q1 STATISTICS & PROBABILITY
H. Duminil-Copin, D. Ioffe, Y. Velenik
{"title":"A quantitative Burton-Keane estimate under strong FKG condition","authors":"H. Duminil-Copin, D. Ioffe, Y. Velenik","doi":"10.1214/15-AOP1049","DOIUrl":null,"url":null,"abstract":"We consider translationally-invariant percolation models on ZdZd satisfying the finite energy and the FKG properties. We provide explicit upper bounds on the probability of having two distinct clusters going from the endpoints of an edge to distance nn (this corresponds to a finite size version of the celebrated Burton–Keane [Comm. Math. Phys. 121 (1989) 501–505] argument proving uniqueness of the infinite-cluster). The proof is based on the generalization of a reverse Poincare inequality proved in Chatterjee and Sen (2013). As a consequence, we obtain upper bounds on the probability of the so-called four-arm event for planar random-cluster models with cluster-weight q≥1q≥1.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/15-AOP1049","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/15-AOP1049","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

We consider translationally-invariant percolation models on ZdZd satisfying the finite energy and the FKG properties. We provide explicit upper bounds on the probability of having two distinct clusters going from the endpoints of an edge to distance nn (this corresponds to a finite size version of the celebrated Burton–Keane [Comm. Math. Phys. 121 (1989) 501–505] argument proving uniqueness of the infinite-cluster). The proof is based on the generalization of a reverse Poincare inequality proved in Chatterjee and Sen (2013). As a consequence, we obtain upper bounds on the probability of the so-called four-arm event for planar random-cluster models with cluster-weight q≥1q≥1.
强FKG条件下的定量Burton-Keane估计
我们考虑了满足有限能量和FKG性质的ZdZd上的平移不变渗流模型。我们提供了两个不同簇从一条边的端点到距离nn的概率的显式上界(这对应于著名的Burton-Keane [Comm. Math]的有限大小版本)。物理学报,121(1989)501-505]证明无限簇的唯一性。该证明是基于Chatterjee和Sen(2013)证明的反向庞加莱不等式的推广。因此,对于聚类权值q≥1q≥1的平面随机聚类模型,我们得到了所谓的四臂事件的概率上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Probability
Annals of Probability 数学-统计学与概率论
CiteScore
4.60
自引率
8.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信