Intermittency for branching random walk in Pareto environment

IF 2.1 1区 数学 Q1 STATISTICS & PROBABILITY
Marcel Ortgiese, Matthew I. Roberts
{"title":"Intermittency for branching random walk in Pareto environment","authors":"Marcel Ortgiese, Matthew I. Roberts","doi":"10.1214/15-AOP1021","DOIUrl":null,"url":null,"abstract":"We consider a branching random walk on the lattice, where the branching rates are given by an i.i.d. Pareto random potential. We describe the process, including a detailed shape theorem, in terms of a system of growing lilypads. As an application we show that the branching random walk is intermittent, in the sense that most particles are concentrated on one very small island with large potential. Moreover, we compare the branching random walk to the parabolic Anderson model and observe that although the two systems show similarities, the mechanisms that control the growth are fundamentally different.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2014-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/15-AOP1021","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/15-AOP1021","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 12

Abstract

We consider a branching random walk on the lattice, where the branching rates are given by an i.i.d. Pareto random potential. We describe the process, including a detailed shape theorem, in terms of a system of growing lilypads. As an application we show that the branching random walk is intermittent, in the sense that most particles are concentrated on one very small island with large potential. Moreover, we compare the branching random walk to the parabolic Anderson model and observe that although the two systems show similarities, the mechanisms that control the growth are fundamentally different.
Pareto环境下分支随机漫步的间歇性问题
我们考虑晶格上的分支随机游走,其中分支速率由一个Pareto随机势给出。我们描述了这个过程,包括一个详细的形状定理,在一个系统的成长的百合叶。作为一个应用,我们证明了分支随机漫步是间歇性的,在某种意义上,大多数粒子集中在一个非常小的岛屿上,具有很大的潜力。此外,我们将分支随机漫步与抛物线型安德森模型进行了比较,并观察到尽管这两个系统具有相似性,但控制生长的机制却存在根本不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Probability
Annals of Probability 数学-统计学与概率论
CiteScore
4.60
自引率
8.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信