On moment sequences and mixed Poisson distributions

IF 1.3 Q2 STATISTICS & PROBABILITY
Markus Kuba, A. Panholzer
{"title":"On moment sequences and mixed Poisson distributions","authors":"Markus Kuba, A. Panholzer","doi":"10.1214/14-PS244","DOIUrl":null,"url":null,"abstract":"In this article we survey properties of mixed Poisson distributions and \nprobabilistic aspects of the Stirling transform: given a non-negative \nrandom variable (X) with moment sequence ((mu_s)_{sinmathbb{N}}) we \ndetermine a discrete random variable (Y), whose moment sequence is \ngiven by the Stirling transform of the sequence ((mu_s)_{sinmathbb{N}}), and \nidentify the distribution as a mixed Poisson distribution. We discuss \nproperties of this family of distributions and present a new simple \nlimit theorem based on expansions of factorial moments instead of power \nmoments. Moreover, we present several examples of mixed Poisson \ndistributions in the analysis of random discrete structures, unifying \nand extending earlier results. We also add several entirely new \nresults: we analyse triangular urn models, where the initial \nconfiguration or the dimension of the urn is not fixed, but may depend \non the discrete time (n). We discuss the branching structure of plane \nrecursive trees and its relation to table sizes in the Chinese \nrestaurant process. Furthermore, we discuss root isolation procedures \nin Cayley trees, a parameter in parking functions, zero contacts in \nlattice paths consisting of bridges, and a parameter related to cyclic \npoints and trees in graphs of random mappings, all leading to mixed \nPoisson-Rayleigh distributions. Finally, we indicate how mixed Poisson \ndistributions naturally arise in the critical composition scheme of \nAnalytic Combinatorics. \n \n","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":"13 1","pages":"89-155"},"PeriodicalIF":1.3000,"publicationDate":"2014-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/14-PS244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 16

Abstract

In this article we survey properties of mixed Poisson distributions and probabilistic aspects of the Stirling transform: given a non-negative random variable (X) with moment sequence ((mu_s)_{sinmathbb{N}}) we determine a discrete random variable (Y), whose moment sequence is given by the Stirling transform of the sequence ((mu_s)_{sinmathbb{N}}), and identify the distribution as a mixed Poisson distribution. We discuss properties of this family of distributions and present a new simple limit theorem based on expansions of factorial moments instead of power moments. Moreover, we present several examples of mixed Poisson distributions in the analysis of random discrete structures, unifying and extending earlier results. We also add several entirely new results: we analyse triangular urn models, where the initial configuration or the dimension of the urn is not fixed, but may depend on the discrete time (n). We discuss the branching structure of plane recursive trees and its relation to table sizes in the Chinese restaurant process. Furthermore, we discuss root isolation procedures in Cayley trees, a parameter in parking functions, zero contacts in lattice paths consisting of bridges, and a parameter related to cyclic points and trees in graphs of random mappings, all leading to mixed Poisson-Rayleigh distributions. Finally, we indicate how mixed Poisson distributions naturally arise in the critical composition scheme of Analytic Combinatorics.
矩序列与混合泊松分布
本文研究了混合泊松分布的性质和斯特林变换的概率方面:给定一个矩序列为((mu_s)_{sinmathbb{N}}的非负随机变量(X),我们确定了一个离散随机变量(Y),它的矩序列由序列((mu_s)_{sinmathbb{N}})的斯特林变换给出,并确定该分布为混合泊松分布。我们讨论了这类分布的性质,并提出了一个新的简单极限定理,该定理是基于阶乘矩的展开式而不是幂矩。此外,我们给出了几个混合泊松分布在随机离散结构分析中的例子,统一和推广了先前的结果。我们还增加了几个全新的结果:我们分析了三角形瓮模型,其中瓮的初始配置或尺寸不是固定的,但可能取决于离散时间(n)。我们讨论了平面递归树的分支结构及其与中国餐馆过程中桌子大小的关系。此外,我们讨论了Cayley树的根隔离过程,停车函数中的一个参数,由桥组成的格路径中的零接触,以及随机映射图中与循环点和树相关的一个参数,所有这些都导致了混合泊松-瑞利分布。最后,我们指出混合泊松分布是如何在解析组合学的临界组合方案中自然产生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信