{"title":"On some spectral properties of the weighted ∂¯-Neumann operator","authors":"F. Berger, F. Haslinger","doi":"10.1215/21562261-2019-0013","DOIUrl":null,"url":null,"abstract":"We study necessary conditions for compactness of the weighted ∂-Neumann operator on the space L2(Cn, e−φ) for a plurisubharmonic function φ. Under the assumption that the corresponding weighted Bergman space of entire functions has infinite dimension, a weaker result is obtained by simpler methods. Moreover, we investigate (non-) compactness of the ∂-Neumann operator for decoupled weights, which are of the form φ(z) = φ1(z1) + · · ·+ φn(zn). More can be said if every ∆φj defines a nontrivial doubling measure.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1215/21562261-2019-0013","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2019-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We study necessary conditions for compactness of the weighted ∂-Neumann operator on the space L2(Cn, e−φ) for a plurisubharmonic function φ. Under the assumption that the corresponding weighted Bergman space of entire functions has infinite dimension, a weaker result is obtained by simpler methods. Moreover, we investigate (non-) compactness of the ∂-Neumann operator for decoupled weights, which are of the form φ(z) = φ1(z1) + · · ·+ φn(zn). More can be said if every ∆φj defines a nontrivial doubling measure.