On some spectral properties of the weighted ∂¯-Neumann operator

IF 0.5 4区 数学 Q3 MATHEMATICS
F. Berger, F. Haslinger
{"title":"On some spectral properties of the weighted ∂¯-Neumann operator","authors":"F. Berger, F. Haslinger","doi":"10.1215/21562261-2019-0013","DOIUrl":null,"url":null,"abstract":"We study necessary conditions for compactness of the weighted ∂-Neumann operator on the space L2(Cn, e−φ) for a plurisubharmonic function φ. Under the assumption that the corresponding weighted Bergman space of entire functions has infinite dimension, a weaker result is obtained by simpler methods. Moreover, we investigate (non-) compactness of the ∂-Neumann operator for decoupled weights, which are of the form φ(z) = φ1(z1) + · · ·+ φn(zn). More can be said if every ∆φj defines a nontrivial doubling measure.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1215/21562261-2019-0013","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyoto Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2019-0013","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We study necessary conditions for compactness of the weighted ∂-Neumann operator on the space L2(Cn, e−φ) for a plurisubharmonic function φ. Under the assumption that the corresponding weighted Bergman space of entire functions has infinite dimension, a weaker result is obtained by simpler methods. Moreover, we investigate (non-) compactness of the ∂-Neumann operator for decoupled weights, which are of the form φ(z) = φ1(z1) + · · ·+ φn(zn). More can be said if every ∆φj defines a nontrivial doubling measure.
关于加权∂¯-Neumann算子的一些谱性质
研究了多元次谐波函数φ在空间L2(Cn, e−φ)上的加权∂-Neumann算子的紧性的必要条件。在假设整个函数对应的加权Bergman空间具有无限维数的情况下,用更简单的方法得到了一个较弱的结果。此外,我们还研究了对于解耦权重的∂- neumann算子的(非)紧性,其形式为φ(z) = φ1(z1) +···+ φn(zn)。如果每一个∆φj定义了一个非平凡的加倍测度,则可以说得更多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Kyoto Journal of Mathematics publishes original research papers at the forefront of pure mathematics, including surveys that contribute to advances in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信