Extremes of a class of nonhomogeneous Gaussian random fields

IF 2.1 1区 数学 Q1 STATISTICS & PROBABILITY
Krzysztof Dcebicki, E. Hashorva, L. Ji
{"title":"Extremes of a class of nonhomogeneous Gaussian random fields","authors":"Krzysztof Dcebicki, E. Hashorva, L. Ji","doi":"10.1214/14-AOP994","DOIUrl":null,"url":null,"abstract":"This contribution establishes exact tail asymptotics of sup(s,t)∈E X(s,t) for a large class of nonhomogeneous Gaussian random fields X on a bounded convex set E⊂R2, with variance function that attains its maximum on a segment on E. These findings extend the classical results for homogeneous Gaussian random fields and Gaussian random fields with unique maximum point of the variance. Applications of our result include the derivation of the exact tail asymptotics of the Shepp statistics for stationary Gaussian processes, Brownian bridge and fractional Brownian motion as well as the exact tail asymptotic expansion for the maximum loss and span of stationary Gaussian processes.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2014-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/14-AOP994","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/14-AOP994","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 36

Abstract

This contribution establishes exact tail asymptotics of sup(s,t)∈E X(s,t) for a large class of nonhomogeneous Gaussian random fields X on a bounded convex set E⊂R2, with variance function that attains its maximum on a segment on E. These findings extend the classical results for homogeneous Gaussian random fields and Gaussian random fields with unique maximum point of the variance. Applications of our result include the derivation of the exact tail asymptotics of the Shepp statistics for stationary Gaussian processes, Brownian bridge and fractional Brownian motion as well as the exact tail asymptotic expansion for the maximum loss and span of stationary Gaussian processes.
一类非齐次高斯随机场的极值
这一贡献为有界凸集E∧R2上的一大类非齐次高斯随机场X建立了sup(s,t)∈E X(s,t)的精确尾渐近性,其方差函数在E上的某段上达到最大值。这些发现推广了齐次高斯随机场和方差最大点唯一的高斯随机场的经典结果。该结果的应用包括平稳高斯过程、布朗桥和分数布朗运动的Shepp统计量的精确尾渐近的推导,以及平稳高斯过程的最大损失和最大跨度的精确尾渐近展开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Probability
Annals of Probability 数学-统计学与概率论
CiteScore
4.60
自引率
8.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信