On the perimeter of excursion sets of shot noise random fields

IF 2.1 1区 数学 Q1 STATISTICS & PROBABILITY
H. Biermé, A. Desolneux
{"title":"On the perimeter of excursion sets of shot noise random fields","authors":"H. Biermé, A. Desolneux","doi":"10.1214/14-AOP980","DOIUrl":null,"url":null,"abstract":"In this paper, we use the framework of functions of bounded variation and the coarea formula to give an explicit computation for the expectation of the perimeter of excursion sets of shot noise random fields in dimension n≥1. This will then allow us to derive the asymptotic behavior of these mean perimeters as the intensity of the underlying homogeneous Poisson point process goes to infinity. In particular, we show that two cases occur: we have a Gaussian asymptotic behavior when the kernel function of the shot noise has no jump part, whereas the asymptotic is non-Gaussian when there are jumps.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":"44 1","pages":"521-543"},"PeriodicalIF":2.1000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/14-AOP980","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/14-AOP980","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 24

Abstract

In this paper, we use the framework of functions of bounded variation and the coarea formula to give an explicit computation for the expectation of the perimeter of excursion sets of shot noise random fields in dimension n≥1. This will then allow us to derive the asymptotic behavior of these mean perimeters as the intensity of the underlying homogeneous Poisson point process goes to infinity. In particular, we show that two cases occur: we have a Gaussian asymptotic behavior when the kernel function of the shot noise has no jump part, whereas the asymptotic is non-Gaussian when there are jumps.
散粒噪声随机场偏移集的周长
本文利用有界变分函数框架和共面积公式,给出了n≥1维的散粒噪声随机场偏移集周长期望的显式计算。这样我们就可以推导出当齐次泊松点过程的强度趋于无穷时这些平均周长的渐近行为。特别地,我们证明了两种情况:当散粒噪声的核函数没有跳跃部分时,我们有高斯渐近行为,而当有跳跃时,渐近行为是非高斯的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Probability
Annals of Probability 数学-统计学与概率论
CiteScore
4.60
自引率
8.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信