On spectral methods for variance based sensitivity analysis

IF 1.3 Q2 STATISTICS & PROBABILITY
A. Alexanderian
{"title":"On spectral methods for variance based sensitivity analysis","authors":"A. Alexanderian","doi":"10.1214/13-PS219","DOIUrl":null,"url":null,"abstract":"Consider a mathematical model with a finite number of random parameters. \nVariance based sensitivity analysis provides a framework to characterize \nthe contribution of the individual parameters to the total variance of \nthe model response. We consider the spectral methods for variance based \nsensitivity analysis which \nutilize representations of square integrable random variables in a \ngeneralized polynomial chaos basis. \nTaking a measure theoretic point of view, we \nprovide a rigorous and at the same time intuitive perspective on the \nspectral methods for variance based sensitivity analysis. \nMoreover, we discuss approximation errors incurred by fixing \ninessential random \nparameters, when approximating functions with generalized polynomial \nchaos expansions.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":"10 1","pages":"51-68"},"PeriodicalIF":1.3000,"publicationDate":"2013-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/13-PS219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 17

Abstract

Consider a mathematical model with a finite number of random parameters. Variance based sensitivity analysis provides a framework to characterize the contribution of the individual parameters to the total variance of the model response. We consider the spectral methods for variance based sensitivity analysis which utilize representations of square integrable random variables in a generalized polynomial chaos basis. Taking a measure theoretic point of view, we provide a rigorous and at the same time intuitive perspective on the spectral methods for variance based sensitivity analysis. Moreover, we discuss approximation errors incurred by fixing inessential random parameters, when approximating functions with generalized polynomial chaos expansions.
基于方差的灵敏度分析的光谱方法
考虑一个具有有限个随机参数的数学模型。基于方差的敏感性分析提供了一个框架来描述单个参数对模型响应总方差的贡献。本文研究了基于方差的灵敏度分析的谱方法,该方法利用广义多项式混沌基中平方可积随机变量的表示。从测度理论的角度出发,为方差敏感性分析的光谱方法提供了一个严谨而直观的视角。此外,我们还讨论了用广义多项式混沌展开式逼近函数时,由于固定不必要的随机参数而产生的逼近误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信