Quantile coupling inequalities and their applications

IF 1.3 Q2 STATISTICS & PROBABILITY
D. Mason, Harrison H. Zhou
{"title":"Quantile coupling inequalities and their applications","authors":"D. Mason, Harrison H. Zhou","doi":"10.1214/12-PS198","DOIUrl":null,"url":null,"abstract":"This is partly an expository paper. We prove and highlight a quantile inequality that is implicit in the fundamental paper by Komlos, Major, and Tusnady (31) on Brownian motion strong approximations to partial sums of independent and identically distributed random variables. We also derive a number of refinements of this inequality, which hold when more assumptions are added. A number of examples are detailed that will likely be of separate interest. We especially call attention to applications to the asymptotic equivalence theory of nonparametric statistical models and nonparametric function estimation. AMS 2000 subject classifications: Primary 62E17; secondary 62B15,","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":"9 1","pages":"439-479"},"PeriodicalIF":1.3000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/12-PS198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 37

Abstract

This is partly an expository paper. We prove and highlight a quantile inequality that is implicit in the fundamental paper by Komlos, Major, and Tusnady (31) on Brownian motion strong approximations to partial sums of independent and identically distributed random variables. We also derive a number of refinements of this inequality, which hold when more assumptions are added. A number of examples are detailed that will likely be of separate interest. We especially call attention to applications to the asymptotic equivalence theory of nonparametric statistical models and nonparametric function estimation. AMS 2000 subject classifications: Primary 62E17; secondary 62B15,
分位数耦合不等式及其应用
这部分是一篇说明性论文。我们证明并强调了在Komlos, Major和Tusnady(31)关于独立和同分布随机变量部分和的布朗运动强近似的基本论文中隐含的分位数不等式。我们还推导了这个不等式的一些改进,当加入更多的假设时,这些改进仍然成立。详细介绍了一些可能会引起不同兴趣的例子。我们特别注意非参数统计模型和非参数函数估计的渐近等价理论的应用。AMS 2000学科分类:初级62E17;二次62去往b15,
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信