Three theorems in discrete random geometry

IF 1.3 Q2 STATISTICS & PROBABILITY
G. Grimmett
{"title":"Three theorems in discrete random geometry","authors":"G. Grimmett","doi":"10.1214/11-PS185","DOIUrl":null,"url":null,"abstract":"These notes are focused on three recent results in discrete ran- dom geometry, namely: the proof by Duminil-Copin and Smirnov that the connective constant of the hexagonal lattice is p 2 + √ 2; the proof by the author and Manolescu of the universality of inhomogeneous bond percola- tion on the square, triangular, and hexagonal lattices; the proof by Beffara and Duminil-Copin that the critical point of the random-cluster model on Z 2 is √ q/(1 + √ q). Background information on the relevant random pro- cesses is presented on route to these theorems. The emphasis is upon the communication of ideas and connections as well as upon the detailed proofs. AMS 2000 subject classifications: Primary 60K35; secondary 82B43. Keywords and phrases: Self-avoiding walk, connective constant, per- colation, random-cluster model, Ising model, star-triangle transformation, Yang-Baxter equation, critical exponent, universality, isoradiality.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":"8 1","pages":"403-441"},"PeriodicalIF":1.3000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/11-PS185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 12

Abstract

These notes are focused on three recent results in discrete ran- dom geometry, namely: the proof by Duminil-Copin and Smirnov that the connective constant of the hexagonal lattice is p 2 + √ 2; the proof by the author and Manolescu of the universality of inhomogeneous bond percola- tion on the square, triangular, and hexagonal lattices; the proof by Beffara and Duminil-Copin that the critical point of the random-cluster model on Z 2 is √ q/(1 + √ q). Background information on the relevant random pro- cesses is presented on route to these theorems. The emphasis is upon the communication of ideas and connections as well as upon the detailed proofs. AMS 2000 subject classifications: Primary 60K35; secondary 82B43. Keywords and phrases: Self-avoiding walk, connective constant, per- colation, random-cluster model, Ising model, star-triangle transformation, Yang-Baxter equation, critical exponent, universality, isoradiality.
离散随机几何中的三个定理
这些笔记集中在离散随机几何中的三个最新结果,即:dumini - copin和Smirnov证明六边形晶格的连接常数为p2 +√2;作者和Manolescu在正方形、三角形和六边形晶格上证明非齐次键超性的普遍性;Beffara和dumini - copin证明了z2上随机聚类模型的临界点为√q/(1 +√q)。在推导这些定理的过程中,给出了相关随机过程的背景信息。重点在于思想和联系的交流以及详细的证明。AMS 2000学科分类:初级60K35;二次82 b43。关键词:自避行走,连接常数,排序,随机聚类模型,Ising模型,星三角变换,Yang-Baxter方程,临界指数,普适性,等辐射性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信