Functional integral representations for self-avoiding walk ∗

IF 1.3 Q2 STATISTICS & PROBABILITY
D. Brydges, J. Imbrie, G. Slade
{"title":"Functional integral representations for self-avoiding walk ∗","authors":"D. Brydges, J. Imbrie, G. Slade","doi":"10.1214/09-PS152","DOIUrl":null,"url":null,"abstract":"We give a survey and unified treatment of functional inte- gral representations for both simple random walk and some self-avoiding walk models, including models with strict self-avoidance, with weak self- avoidance, and a model of walks and loops. Our representation for the strictly self-avoiding walk is new. The representations have recently been used as the point of departure for rigorous renormalization group analyses of self-avoiding walk models in dimension 4. For the models without loops, the integral representations involve fermions, and we also provide an in- troduction to fermionic integrals. The fermionic integrals are in terms of anticommutingGrassmann variables,which can be convenientlyinterpreted as differential forms.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2009-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/09-PS152","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/09-PS152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 49

Abstract

We give a survey and unified treatment of functional inte- gral representations for both simple random walk and some self-avoiding walk models, including models with strict self-avoidance, with weak self- avoidance, and a model of walks and loops. Our representation for the strictly self-avoiding walk is new. The representations have recently been used as the point of departure for rigorous renormalization group analyses of self-avoiding walk models in dimension 4. For the models without loops, the integral representations involve fermions, and we also provide an in- troduction to fermionic integrals. The fermionic integrals are in terms of anticommutingGrassmann variables,which can be convenientlyinterpreted as differential forms.
自回避行走的函数积分表示
本文对简单随机行走和一些自回避行走模型的函数积分表示进行了综述和统一处理,包括严格自回避模型、弱自回避模型和行走与循环模型。我们对严格自我避免行走的表述是新的。这些表示最近被用作4维自回避行走模型的严格重整化群分析的出发点。对于无循环的模型,积分表示涉及费米子,我们也提供了费米子积分的介绍。费米子积分是用反交换格拉斯曼变量表示的,可以方便地解释为微分形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信