Prototype Theory Based Feature Representation for PolSAR Images

Q2 Physics and Astronomy
雷达学报 Pub Date : 2016-04-01 DOI:10.12000/JR15071
Huang Xiaojing, Yang Xiangli, Huang Pingping, Yang Wen
{"title":"Prototype Theory Based Feature Representation for PolSAR Images","authors":"Huang Xiaojing, Yang Xiangli, Huang Pingping, Yang Wen","doi":"10.12000/JR15071","DOIUrl":null,"url":null,"abstract":"This study presents a new feature representation approach for Polarimetric Synthetic Aperture Radar (PolSAR) image based on prototype theory. First, multiple prototype sets are generated using prototype theory. Then, regularized logistic regression is used to predict similarities between a test sample and each prototype set. Finally, the PolSAR image feature representation is obtained by ensemble projection. Experimental results of an unsupervised classification of PolSAR images show that our method can efficiently represent polarimetric signatures of different land covers and yield satisfactory classification results.","PeriodicalId":37701,"journal":{"name":"雷达学报","volume":"815 1","pages":"208-216"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"雷达学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.12000/JR15071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a new feature representation approach for Polarimetric Synthetic Aperture Radar (PolSAR) image based on prototype theory. First, multiple prototype sets are generated using prototype theory. Then, regularized logistic regression is used to predict similarities between a test sample and each prototype set. Finally, the PolSAR image feature representation is obtained by ensemble projection. Experimental results of an unsupervised classification of PolSAR images show that our method can efficiently represent polarimetric signatures of different land covers and yield satisfactory classification results.
基于原型理论的PolSAR图像特征表示
提出了一种基于原型理论的偏振合成孔径雷达(PolSAR)图像特征表示方法。首先,利用原型理论生成多个原型集。然后,使用正则化逻辑回归预测测试样本与每个原型集之间的相似性。最后,采用集合投影法得到PolSAR图像的特征表示。对PolSAR图像进行无监督分类的实验结果表明,该方法可以有效地表示不同土地覆被的极化特征,并获得满意的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
雷达学报
雷达学报 Physics and Astronomy-Instrumentation
CiteScore
4.10
自引率
0.00%
发文量
882
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信