M. Dad, H. Fredriksson, J. van de Loosdrecht, P. Thüne, J. Niemantsverdriet
{"title":"Stabilization of iron by manganese promoters in uniform bimetallic FeMn Fischer–Tropsch model catalysts prepared from colloidal nanoparticles","authors":"M. Dad, H. Fredriksson, J. van de Loosdrecht, P. Thüne, J. Niemantsverdriet","doi":"10.1179/2055075815Y.0000000003","DOIUrl":null,"url":null,"abstract":"Abstract A systematic study was carried out to investigate the response of monodisperse supported Fe and FeMn nanoparticles to treatments in O2, H2 and H2/CO at temperatures between 270 and 400°C. Uniform size (7–14 nm), Fe and mixed FeMn nanoparticles were synthesised by applying thermal decomposition of Fe- and Mn-oleate complexes in a high boiling point solvent. By combining X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) analysis, the phase composition and morphology of the model catalysts were studied. Energy-dispersive X-ray analysis shows that the catalyst particles have the expected composition of Fe and Mn. Well-defined crystallite phases [maghemite (γ-Fe2O3) and mixed FeMn-spinel] were observed after calcination at 350°C in Ar/O2 using XPS analysis. Upon subsequent treatments in H2 and H2/CO the crystal phases changed from maghemite (γ-Fe2O3) to metallic Fe, Fe carbide and graphitic C. Using Mn as a promoter influences the nanoparticle size achieved during the fabrication of Fe nanoparticles and improves their stability against morphological change and agglomeration during reduction and Fischer–Tropsch synthesis conditions.","PeriodicalId":43717,"journal":{"name":"Catalysis Structure & Reactivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1179/2055075815Y.0000000003","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Structure & Reactivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1179/2055075815Y.0000000003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 21
Abstract
Abstract A systematic study was carried out to investigate the response of monodisperse supported Fe and FeMn nanoparticles to treatments in O2, H2 and H2/CO at temperatures between 270 and 400°C. Uniform size (7–14 nm), Fe and mixed FeMn nanoparticles were synthesised by applying thermal decomposition of Fe- and Mn-oleate complexes in a high boiling point solvent. By combining X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) analysis, the phase composition and morphology of the model catalysts were studied. Energy-dispersive X-ray analysis shows that the catalyst particles have the expected composition of Fe and Mn. Well-defined crystallite phases [maghemite (γ-Fe2O3) and mixed FeMn-spinel] were observed after calcination at 350°C in Ar/O2 using XPS analysis. Upon subsequent treatments in H2 and H2/CO the crystal phases changed from maghemite (γ-Fe2O3) to metallic Fe, Fe carbide and graphitic C. Using Mn as a promoter influences the nanoparticle size achieved during the fabrication of Fe nanoparticles and improves their stability against morphological change and agglomeration during reduction and Fischer–Tropsch synthesis conditions.