Mohammed Bouzbib, Maryam El Marouani, Katalin Sinkó
{"title":"Effect of various additives on aluminum oxide thin films prepared by dip coating, thermal behavior, kinetics and optical properties","authors":"Mohammed Bouzbib, Maryam El Marouani, Katalin Sinkó","doi":"10.1186/s41476-021-00170-x","DOIUrl":null,"url":null,"abstract":"<div><p>Aluminum oxide thin films attract research interest due to their properties. Aluminum acetate was used as an Al source with acetic acid, oxalic acid, and nitric acid as additives. The transmittance and the thickness of the films strongly depend on the additives, with the approximate bandgap energy changing from 5 ev to 5.4 ev. The aluminum oxide film deposited by dip-coating is presented great uniform surface morphology. The knowledge of the degradation kinetics of materials is essential for investigating the thermal stability of compounds. The acetic acid thin film proved to be the most efficient additive by demonstrating interesting optoelectronic properties. The thin films deposited by dip-coating were characterized by using X-ray grazing incidence diffraction, SEM, UV-Visible spectroscopy. Gamma aluminum oxide thin films prepared by acetic acid can be a good candidate for a wide range of optical applications.</p></div>","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":"17 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jeos.springeropen.com/counter/pdf/10.1186/s41476-021-00170-x","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s41476-021-00170-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Aluminum oxide thin films attract research interest due to their properties. Aluminum acetate was used as an Al source with acetic acid, oxalic acid, and nitric acid as additives. The transmittance and the thickness of the films strongly depend on the additives, with the approximate bandgap energy changing from 5 ev to 5.4 ev. The aluminum oxide film deposited by dip-coating is presented great uniform surface morphology. The knowledge of the degradation kinetics of materials is essential for investigating the thermal stability of compounds. The acetic acid thin film proved to be the most efficient additive by demonstrating interesting optoelectronic properties. The thin films deposited by dip-coating were characterized by using X-ray grazing incidence diffraction, SEM, UV-Visible spectroscopy. Gamma aluminum oxide thin films prepared by acetic acid can be a good candidate for a wide range of optical applications.
氧化铝薄膜因其特性而备受研究关注。研究以醋酸铝为铝源,醋酸、草酸和硝酸为添加剂。薄膜的透射率和厚度在很大程度上取决于添加剂,近似带隙能从 5 ev 变为 5.4 ev。通过浸涂法沉积的氧化铝薄膜呈现出非常均匀的表面形态。了解材料的降解动力学对于研究化合物的热稳定性至关重要。醋酸薄膜显示出有趣的光电特性,被证明是最有效的添加剂。使用 X 射线掠入射衍射、扫描电镜和紫外-可见光谱对通过浸涂法沉积的薄膜进行了表征。用醋酸制备的伽马氧化铝薄膜可广泛应用于光学领域。
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.