{"title":"Effect of cutting parameters on the microstructure evolution and damage mechanism of 7075-T6 aluminum alloy in micro cutting","authors":"Ping Zhang, Zhen-cong Lin, Zehua Liu, Junling Liu, Qingqun Mai, Xiujie Yue","doi":"10.1177/10567895231171408","DOIUrl":null,"url":null,"abstract":"This work aims to explore how cutting parameters affect the microstructure evolution and damage mechanism of 7075-T6 aluminum alloy in micro cutting. The effect of cutting parameters on micro cutting force and surface morphology is examined through single-factor test. By building a 3D micro finite element model for micro cutting based on crystal plasticity theory, the effect of cutting parameters on residual stress, microstructure evolution and damage behavior is analyzed to establish a mapping relation between residual stress and damage. The results show that as cutting speed increases, main cutting force first reduces then increases in all cases, but the cutting speed at the inflection point corresponding to main cutting force is different. The micro cutting surface morphology of 7075-T6 aluminum alloy displays obvious signs of plowing; detectable oxidation adhesion wear appears when the cutting depth is greater than 150 μm. Crack initiation and propagation on the machined surface of 7075-T6 aluminum alloy vary considerably under different cutting parameters. Residual stress distribution displays a ladle profile. The deeper the maximum residual compressive stress is from the surface, the harder it is for micro cracks to initiate and propagate. SEM and EDS analysis indicates that at smaller cutting depths, micro cutting tool wear is dominated by oxidation wear; at larger cutting depths, surface morphology is mostly better than at smaller cutting depths.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"7 1","pages":"914 - 939"},"PeriodicalIF":4.0000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895231171408","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8
Abstract
This work aims to explore how cutting parameters affect the microstructure evolution and damage mechanism of 7075-T6 aluminum alloy in micro cutting. The effect of cutting parameters on micro cutting force and surface morphology is examined through single-factor test. By building a 3D micro finite element model for micro cutting based on crystal plasticity theory, the effect of cutting parameters on residual stress, microstructure evolution and damage behavior is analyzed to establish a mapping relation between residual stress and damage. The results show that as cutting speed increases, main cutting force first reduces then increases in all cases, but the cutting speed at the inflection point corresponding to main cutting force is different. The micro cutting surface morphology of 7075-T6 aluminum alloy displays obvious signs of plowing; detectable oxidation adhesion wear appears when the cutting depth is greater than 150 μm. Crack initiation and propagation on the machined surface of 7075-T6 aluminum alloy vary considerably under different cutting parameters. Residual stress distribution displays a ladle profile. The deeper the maximum residual compressive stress is from the surface, the harder it is for micro cracks to initiate and propagate. SEM and EDS analysis indicates that at smaller cutting depths, micro cutting tool wear is dominated by oxidation wear; at larger cutting depths, surface morphology is mostly better than at smaller cutting depths.
期刊介绍:
Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics.
Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department.
The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).