Gas-phase elemental mercury removal by nano-ceramic material

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
T. Zhu, Weidong Jing, Xing Zhang, Wenjing Bian, Yiwei Han, Tongshen Liu, Yiming Hou, Zefu Ye
{"title":"Gas-phase elemental mercury removal by nano-ceramic material","authors":"T. Zhu, Weidong Jing, Xing Zhang, Wenjing Bian, Yiwei Han, Tongshen Liu, Yiming Hou, Zefu Ye","doi":"10.1177/1847980419899759","DOIUrl":null,"url":null,"abstract":"The nano-ceramic which is mesoporous silica material was applied to test the removal efficiency of gas-phase Hg0 using a fixed-bed reactor. The physical and chemical properties of nano-ceramic were investigated by various techniques such as BET surface area (BET), X-ray diffraction, fourier transform infrared spectrometer (FTIR), and scanning electron microscope (SEM); then, the sample was tested for mercury adsorption under different conditions. The mercury adsorption tests shown that different Hg0 concentration, adsorption temperature, gas flow rate, and different gas components have significant effects on the mercury removal performance of nano-ceramic, and the adsorption removal rate of nano-ceramic can be 75.58% under the optimal experimental conditions. After fitting the experimental data to the adsorption model, it was found that the theoretical maximum mercury adsorption amount q max of nano-ceramic is 1.61 mg g−1 and there were physical and chemical adsorption at the same time. The adsorption kinetics fitting results shown that the adsorption process of nano-ceramic exhibits multi-segment characteristics of “transmembrane–diffusion–adsorption.”","PeriodicalId":19018,"journal":{"name":"Nanomaterials and Nanotechnology","volume":"10 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1847980419899759","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials and Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1847980419899759","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

The nano-ceramic which is mesoporous silica material was applied to test the removal efficiency of gas-phase Hg0 using a fixed-bed reactor. The physical and chemical properties of nano-ceramic were investigated by various techniques such as BET surface area (BET), X-ray diffraction, fourier transform infrared spectrometer (FTIR), and scanning electron microscope (SEM); then, the sample was tested for mercury adsorption under different conditions. The mercury adsorption tests shown that different Hg0 concentration, adsorption temperature, gas flow rate, and different gas components have significant effects on the mercury removal performance of nano-ceramic, and the adsorption removal rate of nano-ceramic can be 75.58% under the optimal experimental conditions. After fitting the experimental data to the adsorption model, it was found that the theoretical maximum mercury adsorption amount q max of nano-ceramic is 1.61 mg g−1 and there were physical and chemical adsorption at the same time. The adsorption kinetics fitting results shown that the adsorption process of nano-ceramic exhibits multi-segment characteristics of “transmembrane–diffusion–adsorption.”
纳米陶瓷材料气相单质汞的去除
采用介孔二氧化硅纳米陶瓷材料,在固定床反应器上测试气相Hg0的去除效率。采用BET比表面积(BET)、x射线衍射、傅里叶变换红外光谱仪(FTIR)、扫描电镜(SEM)等研究了纳米陶瓷的理化性质;然后,对样品在不同条件下的汞吸附进行了测试。汞吸附试验表明,不同的Hg0浓度、吸附温度、气体流速和不同的气体组分对纳米陶瓷的除汞性能有显著影响,在最佳实验条件下,纳米陶瓷的吸附去除率可达75.58%。将实验数据拟合到吸附模型中,发现纳米陶瓷对汞的理论最大吸附量q max为1.61 mg g−1,同时存在物理和化学吸附。吸附动力学拟合结果表明,纳米陶瓷的吸附过程具有“跨膜-扩散-吸附”的多段特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanomaterials and Nanotechnology
Nanomaterials and Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.20
自引率
21.60%
发文量
13
审稿时长
15 weeks
期刊介绍: Nanomaterials and Nanotechnology is a JCR ranked, peer-reviewed open access journal addressed to a cross-disciplinary readership including scientists, researchers and professionals in both academia and industry with an interest in nanoscience and nanotechnology. The scope comprises (but is not limited to) the fundamental aspects and applications of nanoscience and nanotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信