{"title":"KUBeetle-S: An insect-like, tailless, hover-capable robot that can fly with a low-torque control mechanism","authors":"H. Phan, S. Aurecianus, T. Kang, H. Park","doi":"10.1177/1756829319861371","DOIUrl":null,"url":null,"abstract":"For an insect-like tailless flying robot, flapping wings should be able to produce control force as well as flight force to keep the robot staying airborne. This capability requires an active control mechanism, which should be integrated with lightweight microcontrol actuators that can produce sufficient control torques to stabilize the robot due to its inherent instability. In this work, we propose a control mechanism integrated in a hover-capable, two-winged, flapping-wing, 16.4 g flying robot (KUBeetle-S) that can simultaneously change the wing stroke-plane and wing twist. Tilting the stroke plane causes changes in the direction of average thrust and the wing twist distribution to produce control torques for pitch and roll. For yaw (heading change), root spars of left and right wings are adjusted asymmetrically to change the wing twist during flapping motion, resulting in yaw torque generation. Changes in wing kinematics were validated by measuring wing kinematics using three synchronized high-speed cameras. We then performed a series of experiments using a six-axis force/torque load cell to evaluate the effectiveness of the control mechanism via torque generation. We prototyped the robot by integrating the control mechanism with sub-micro servos as control actuators and flight control board. Free flight tests were finally conducted to verify the possibility of attitude control.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756829319861371","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1756829319861371","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 46
Abstract
For an insect-like tailless flying robot, flapping wings should be able to produce control force as well as flight force to keep the robot staying airborne. This capability requires an active control mechanism, which should be integrated with lightweight microcontrol actuators that can produce sufficient control torques to stabilize the robot due to its inherent instability. In this work, we propose a control mechanism integrated in a hover-capable, two-winged, flapping-wing, 16.4 g flying robot (KUBeetle-S) that can simultaneously change the wing stroke-plane and wing twist. Tilting the stroke plane causes changes in the direction of average thrust and the wing twist distribution to produce control torques for pitch and roll. For yaw (heading change), root spars of left and right wings are adjusted asymmetrically to change the wing twist during flapping motion, resulting in yaw torque generation. Changes in wing kinematics were validated by measuring wing kinematics using three synchronized high-speed cameras. We then performed a series of experiments using a six-axis force/torque load cell to evaluate the effectiveness of the control mechanism via torque generation. We prototyped the robot by integrating the control mechanism with sub-micro servos as control actuators and flight control board. Free flight tests were finally conducted to verify the possibility of attitude control.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.